56 research outputs found
Mechanisms underlying the synaptic trafficking of the glutamate delta receptor GluD1
Ionotropic glutamate delta receptors do not bind glutamate and do not generate ionic current, resulting in difficulty in studying the function and trafficking of these receptors. Here, we utilize chimeric constructs, in which the ligand-binding domain of GluD1 is replaced by that of GluK1, to examine its synaptic trafficking and plasticity. GluD1 trafficked to the synapse, but was incapable of expressing long-term potentiation (LTP). The C-terminal domain (CT) of GluD1 has a classic PDZ-binding motif, which is critical for the synaptic trafficking of other glutamate receptors, but we found that its binding to PSD-95 was very weak, and deleting the PDZ-binding motif failed to alter synaptic trafficking. However, deletion of the entire CT abolished synaptic trafficking, but not surface expression. We found that mutation of threonine (T) T923 to an alanine disrupted synaptic trafficking. Therefore, GluD1 receptors have strikingly different trafficking mechanisms compared with AMPARs. These results highlight the diversity of ionotropic glutamate receptor trafficking rules at a single type of synapse. Since this receptor is genetically associated with schizophrenia, our findings may provide an important clue to understand schizophrenia
Creatine supplementation with specific view to exercise/sports performance: An update
Creatine is one of the most popular and widely researched natural supplements. The majority of studies have
focused on the effects of creatine monohydrate on performance and health; however, many other forms of
creatine exist and are commercially available in the sports nutrition/supplement market. Regardless of the form,
supplementation with creatine has regularly shown to increase strength, fat free mass, and muscle morphology
with concurrent heavy resistance training more than resistance training alone. Creatine may be of benefit in other
modes of exercise such as high-intensity sprints or endurance training. However, it appears that the effects of
creatine diminish as the length of time spent exercising increases. Even though not all individuals respond similarly
to creatine supplementation, it is generally accepted that its supplementation increases creatine storage and
promotes a faster regeneration of adenosine triphosphate between high intensity exercises. These improved
outcomes will increase performance and promote greater training adaptations. More recent research suggests that
creatine supplementation in amounts of 0.1 g/kg of body weight combined with resistance training improves
training adaptations at a cellular and sub-cellular level. Finally, although presently ingesting creatine as an oral
supplement is considered safe and ethical, the perception of safety cannot be guaranteed, especially when
administered for long period of time to different populations (athletes, sedentary, patient, active, young or elderly)
- …