25 research outputs found

    The rice mitochondrial iron transporter is essential for plant growth

    Get PDF
    In plants, iron (Fe) is essential for mitochondrial electron transport, heme, and Fe-Sulphur (Fe-S) cluster synthesis; however, plant mitochondrial Fe transporters have not been identified. Here we show, identify and characterize the rice mitochondrial Fe transporter (MIT). Based on a transfer DNA library screen, we identified a rice line showing symptoms of Fe deficiency while accumulating high shoot levels of Fe. Homozygous knockout of MIT in this line resulted in a lethal phenotype. MIT localized to the mitochondria and complemented the growth of Δmrs3Δmrs4 yeast defective in mitochondrial Fe transport. The growth of MIT-knockdown (mit-2) plants was also significantly impaired despite abundant Fe accumulation. Further, the decrease in the activity of the mitochondrial and cytosolic Fe-S enzyme, aconitase, indicated that Fe-S cluster synthesis is affected in mit-2 plants. These results indicate that MIT is a mitochondrial Fe transporter essential for rice growth and development

    Natural history of SLC11 genes in vertebrates: tales from the fish world

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>SLC11A1/Nramp1 </it>and <it>SLC11A2/Nramp2 </it>genes belong to the <it>SLC11/Nramp </it>family of transmembrane divalent metal transporters, with <it>SLC11A1 </it>being associated with resistance to pathogens and <it>SLC11A2 </it>involved in intestinal iron uptake and transferrin-bound iron transport. Both members of the <it>SLC11 </it>gene family have been clearly identified in tetrapods; however <it>SLC11A1 </it>has never been documented in teleost fish and is believed to have been lost in this lineage during early vertebrate evolution. In the present work we characterized the <it>SLC11 </it>genes in teleosts and evaluated if the roles attributed to mammalian <it>SLC11 </it>genes are assured by other fish specific <it>SLC11 </it>gene members.</p> <p>Results</p> <p>Two different <it>SLC11 </it>genes were isolated in the European sea bass (<it>Dicentrarchus. labrax</it>), and named <it>slc11a2-α </it>and <it>slc11a2-β</it>, since both were found to be evolutionary closer to tetrapods <it>SLC11A2</it>, through phylogenetic analysis and comparative genomics. Induction of <it>slc11a2-α </it>and <it>slc11a2-β </it>in sea bass, upon iron modulation or exposure to <it>Photobacterium damselae </it>spp. <it>piscicida</it>, was evaluated in <it>in vivo </it>or <it>in vitro </it>experimental models. Overall, <it>slc11a2-α </it>was found to respond only to iron deficiency in the intestine, whereas <it>slc11a2-β </it>was found to respond to iron overload and bacterial infection in several tissues and also in the leukocytes.</p> <p>Conclusions</p> <p>Our data suggests that despite the absence of <it>slc11a1</it>, its functions have been undertaken by one of the <it>slc11a2 </it>duplicated paralogs in teleost fish in a case of synfunctionalization, being involved in both iron metabolism and response to bacterial infection. This study provides, to our knowledge, the first example of this type of sub-functionalization in iron metabolism genes, illustrating how conserving the various functions of the SLC11 gene family is of crucial evolutionary importance.</p

    Nramp defines a family of membrane proteins

    No full text
    10.1073/pnas.92.22.10089Proceedings of the National Academy of Sciences of the United States of America922210089-10093PNAS

    Genome-wide meta-analysis of psoriatic arthritis identifies susceptibility locus at <em>REL</em>.

    Get PDF
    Psoriatic arthritis (PsA) is a chronic inflammatory musculoskeletal disease affecting up to 30% of psoriasis vulgaris (PsV) cases and approximately 0.25 to 1% of the general population. To identify common susceptibility loci, we performed a meta-analysis of three imputed genome-wide association studies (GWAS) on psoriasis, stratified for PsA. A total of 1,160,703 single-nucleotide polymorphisnns (SNPs) were analyzed in the discovery set consisting of 535 PsA cases and 3,432 controls from Germany, the United States, and Canada. We followed up two SNPs in 1,931 PsA cases and 6,785 controls comprising six independent replication panels from Germany, Estonia, the United States, and Canada. In the combined analysis, a genome-wide significant association was detected at 2p16 near the REL locus encoding c-Rel (rs13017599, P=1.18 x 10(-8), odds ratio (OR) =1.27, 95% confidence interval (CI)=1.18-1.35). The rs13017599 polymorphism is known to associate with rheumatoid arthritis (RA), and another SNP near REL (rs702873) was recently implicated in PsV susceptibility. However, conditional analysis indicated that rs13017599, rather than rs702873, accounts for the PsA association at REL. We hypothesize that c-Rel, as a member of the Rel/NF-kappa B family, is associated with PsA in the context of disease pathways that involve other identified PsA and PsV susceptibility genes including TNIP1, TNFAIP3, and NF kappa BIA

    Genome-wide association study identifies a psoriasis susceptibility locus at TRAF3IP2.

    Get PDF
    Psoriasis is a multifactorial skin disease characterized by epidermal hyperproliferation and chronic inflammation, the most common form of which is psoriasis vulgaris (PsV). We present a genome-wide association analysis of 2,339,118 SNPs in 472 PsV cases and 1,146 controls from Germany, with follow-up of the 147 most significant SNPs in 2,746 PsV cases and 4,140 controls from three independent replication panels. We identified an association at TRAF3IP2 on 6q21 and genotyped two SNPs at this locus in two additional replication panels (the combined discovery and replication panels consisted of 6,487 cases and 8,037 controls; combined P = 2.36 &times; 10⁻&sup1;⁰ for rs13210247 and combined P = 1.24 &times; 10⁻&sup1;⁶ for rs33980500). About 15% of psoriasis cases develop psoriatic arthritis (PsA). A stratified analysis of our datasets including only PsA cases (1,922 cases compared to 8,037 controls, P = 4.57 &times; 10⁻&sup1;&sup2; for rs33980500) suggested that TRAF3IP2 represents a shared susceptibility for PsV and PsA. TRAF3IP2 encodes a protein involved in IL-17 signaling and which interacts with members of the Rel/NF-&kappa;B transcription factor family
    corecore