187 research outputs found

    Comportamento reprodutivo do peixe anual brasileiro Cynolebias albipunctatus Costa & Brasil, 1991 (Teleostei, Cyprinodontiformes, Rivulidae): um novo relato de produção de som em peixes

    Get PDF
    The reproductive behavior of Cynolebias albipunctatus is described based on aquarium observations. The sequence of five distinct stages of reproductive behaviors defined for other rivulids was observed: 1) courtship displays; 2) invitation to dive; 3) submerging; 4) spawning/fertilization; 5) emerging. Some patterns are shared with several species of cynolebiatine annual fishes, such as courtship displays with lateral waving movements of male body and unpaired fins of male expanded during waving movements. Some unique behavioral patterns were also identified, such as distinctive movements of male head, producing a crack-like sound to attract the female, determination of a dominant female with exclusion of other female by the couple, dominant exhibiting of female that scrubs its snout in the urogenital region of male and exhibits brief courtship-like movements.O comportamento reprodutivo de Cynolebias albipunctatus é descrito baseado em observações em aquário. A seqüência de cinco estágios distintos de comportamento reprodutivo definidos para outros rivulídeos foi observada: 1) exibições de corte; 2) convite para submergir; 3) submersão; 4) desova/fertilização; 5) emersão. Alguns padrões são compartilhados com várias espécies de peixes anuais, como corte com movimentos ondulantes laterais do corpo do macho e nadadeiras ímpares expandidas durante os movimentos ondulantes. Alguns comportamentos únicos foram observados, como os movimentos distintivos da cabeça do macho, produzindo um som semelhante a um estalo para atrair a fêmea, escolha de uma fêmea dominante com exclusão da outra fêmea pelo casal e algumas exibições dominantes da fêmea que esfrega o focinho na região urogenital do macho e exibe breves movimentos parecidos com os de corte

    The species diversity × fire severity relationship is hump-shaped in semiarid yellow pine and mixed conifer forests

    Get PDF
    The combination of direct human influences and the effects of climate change are resulting in altered ecological disturbance regimes, and this is especially the case for wildfires. Many regions that historically experienced low–moderate severity fire regimes are seeing increased area burned at high severity as a result of interactions between high fuel loads and climate warming with a number of negative ecological effects. While ecosystem impacts of altered fire regimes have been examined in the literature, little is known of the effects of changing fire regimes on forest understory plant diversity even though understory taxa comprise the vast majority of forest plant species and play vital roles in overall ecosystem function. We examined understory plant diversity across gradients of wildfire severity in eight large wildfires in yellow pine and mixed conifer temperate forests of the Sierra Nevada, California, USA. We found a generally unimodal hump-shaped relationship between local (alpha) plant diversity and fire severity. High-severity burning resulted in lower local diversity as well as some homogenization of the flora at the regional scale. Fire severity class, post-fire litter cover, and annual precipitation were the best predictors of understory species diversity. Our research suggests that increases in fire severity in systems historically characterized by low and moderate severity fire may lead to plant diversity losses. These findings indicate that global patterns of increasing fire size and severity may have important implications for biodiversity

    Facilitation and Competition among Invasive Plants: A Field Experiment with Alligatorweed and Water Hyacinth

    Get PDF
    Ecosystems that are heavily invaded by an exotic species often contain abundant populations of other invasive species. This may reflect shared responses to a common factor, but may also reflect positive interactions among these exotic species. Armand Bayou (Pasadena, TX) is one such ecosystem where multiple species of invasive aquatic plants are common. We used this system to investigate whether presence of one exotic species made subsequent invasions by other exotic species more likely, less likely, or if it had no effect. We performed an experiment in which we selectively removed exotic rooted and/or floating aquatic plant species and tracked subsequent colonization and growth of native and invasive species. This allowed us to quantify how presence or absence of one plant functional group influenced the likelihood of successful invasion by members of the other functional group. We found that presence of alligatorweed (rooted plant) decreased establishment of new water hyacinth (free-floating plant) patches but increased growth of hyacinth in established patches, with an overall net positive effect on success of water hyacinth. Water hyacinth presence had no effect on establishment of alligatorweed but decreased growth of existing alligatorweed patches, with an overall net negative effect on success of alligatorweed. Moreover, observational data showed positive correlations between hyacinth and alligatorweed with hyacinth, on average, more abundant. The negative effect of hyacinth on alligatorweed growth implies competition, not strong mutual facilitation (invasional meltdown), is occurring in this system. Removal of hyacinth may increase alligatorweed invasion through release from competition. However, removal of alligatorweed may have more complex effects on hyacinth patch dynamics because there were strong opposing effects on establishment versus growth. The mix of positive and negative interactions between floating and rooted aquatic plants may influence local population dynamics of each group and thus overall invasion pressure in this watershed

    Extent, intensity and drivers of mammal defaunation:a continental-scale analysis across the Neotropics

    Get PDF
    Neotropical mammal diversity is currently threatened by several chronic human-induced pressures. We compiled 1,029 contemporary mammal assemblages surveyed across the Neotropics to quantify the continental-scale extent and intensity of defaunation and understand their determinants based on environmental covariates. We calculated a local defaunation index for all assemblages—adjusted by a false-absence ratio—which was examined using structural equation models. We propose a hunting index based on socioenvironmental co-variables that either intensify or inhibit hunting, which we used as an additional predictor of defaunation. Mammal defaunation intensity across the Neotropics on average erased 56.5% of the local source fauna, with ungulates comprising the most ubiquitous losses. The extent of defaunation is widespread, but more incipient in hitherto relatively intact major biomes that are rapidly succumbing to encroaching deforestation frontiers. Assemblage-wide mammal body mass distribution was greatly reduced from a historical 95th-percentile of ~ 14 kg to only ~ 4 kg in modern assemblages. Defaunation and depletion of large-bodied species were primarily driven by hunting pressure and remaining habitat area. Our findings can inform guidelines to design transnational conservation policies to safeguard native vertebrates, and ensure that the “empty ecosystem” syndrome will be deterred from reaching much of the New World tropics

    Global change effects on plant communities are magnified by time and the number of global change factors imposed

    Get PDF
    Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term (<10 y). In contrast, long-term (≥10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity–ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously
    corecore