2,083 research outputs found

    Inertia of Heat in Advective Accretion Disks around Kerr Black Holes

    Get PDF
    In the innermost region of the advective accretion disk orbiting a black hole of high spin, the inertia of heat stored in the accreting gas is comparable to that of the gas rest mass itself. Accounting for this effect, we derive additional terms in the disk structure equations, and show that the heat inertia plays a significant role in the global energy conservation and dynamics of accretion in the relativistic advective disks.Comment: 6 pages, Latex, submitted to ApJ

    Linear acceleration emission: 2 Power spectrum

    Full text link
    The theory of linear acceleration emission is developed for a large amplitude electrostatic wave in which all particles become highly relativistic in much less than a wave period. An Airy integral approximation is shown to apply near the phases where the electric field passes through zero and the Lorentz factors of all particles have their maxima. The emissivity is derived for an individual particle and is integrated over frequency and solid angle to find the power radiated per particle. The result is different from that implied by the generalized Larmor formula which, we argue, is not valid in this case. We also discuss a mathematical inconsistency that arises when one evaluates the power spectrum by integrating the emissivity over solid angle. The correct power spectrum increases as the 4/3rd power of the frequency at low frequencies, and falls off exponentially above a characteristic frequency. We discuss application of linear acceleration emission to the emission of high frequency photons in an oscillating model for pulsars. We conclude that it cannot account for gamma-ray emission, but can play a role in secondary pair creation.Comment: 25 pages; Accepted for publication in Ap

    Thermoelectric and Seebeck coefficients of granular metals

    Full text link
    In this work we present a detailed study and derivation of the thermopower and thermoelectric coefficient of nano-granular metals at large tunneling conductance between the grains, g_T>> 1. An important criterion for the performance of a thermoelectric device is the thermodynamic figure of merit which is derived using the kinetic coefficients of granular metals. All results are valid at intermediate temperatures, E_c>>T/g_T>\delta, where \delta is the mean energy level spacing for a single grain and E_c its charging energy. We show that the electron-electron interaction leads to an increase of the thermopower with decreasing grain size and discuss our results in the light of future generation thermoelectric materials for low temperature applications. The behavior of the figure of merit depending on system parameters like grain size, tunneling conductance, and temperature is presented.Comment: 27 pages, 10 figures, revtex

    Single grain heating due to inelastic cotunneling

    Full text link
    We study heating effects of a single metallic quantum dot weakly coupled to two leads. The dominant mechanism for heating at low temperatures is due to inelastic electron cotunneling processes. We calculate the grain temperature profile as a function of grain parameters, bias voltage, and time and show that for nanoscale size grains the heating effects are pronounced and easily measurable in experiments.Comment: 4 pages, 3 figures, revtex4, extended and corrected versio

    Frequency dependent polarizability of small metallic grains

    Full text link
    We study the dynamic electronic polarizability of a single nano-scale spherical metallic grain using quantum mechanical approach. We introduce the model for interacting electrons bound in the grain allowing us numerically to calculate the frequency dependence of the polarizability of grains of different sizes. We show that within this model the main resonance peak corresponding to the surface plasmon mode is blue-shifted and some minor secondary resonances above and below the main peak exist. We study the behavior of blue shift as a function of grain size and compare our findings with the classical polarizability and with other results in the literature.Comment: 8 pages, 3 figure

    Radiation Front Sweeping the Ambient Medium of Gamma-Ray Bursts

    Get PDF
    Gamma-ray bursts (GRBs) are emitted by relativistic ejecta from powerful cosmic explosions. Their light curves suggest that the gamma-ray emission occurs at early stages of the ejecta expansion, well before it decelerates in the ambient medium. If so, the launched gamma-ray front must overtake the ejecta and sweep the ambient medium outward. As a result a gap is opened between the ejecta and the medium that surfs the radiation front ahead. Effectively, the ejecta moves in a cavity until it reaches a radius R_{gap}=10^{16}E_{54}^{1/2} cm where E is the isotropic energy of the GRB. At R=R_{gap} the gap is closed, a blast wave forms and collects the medium swept by radiation. Further development of the blast wave is strongly affected by the leading radiation front: the front plays the role of a precursor where the medium is loaded with e+- pairs and preaccelerated just ahead of the blast. It impacts the emission from the blast at R < R_{load}=5R_{gap} (the early afterglow). A spectacular observational effect results: GRB afterglows should start in optical/UV and evolve fast (< min) to a normal X-ray afterglow. The early optical emission observed in GRB 990123 may be explained in this way. The impact of the front is especially strong if the ambient medium is a wind from a massive progenitor of the GRB. In this case three phenomena are predicted: (1) The ejecta decelerates at R<R_{load} producing a lot of soft radiation. (2) The light curve of soft emission peaks at t_{peak}=40(1+z)E_{54}^{1/2}(Gamma_{ej}/100)^{-2} s where Gamma_{ej} is the Lorentz factor of the ejecta. Given measured redshift z and t_{peak}, one finds Gamma_{ej}. (3) The GRB acquires a spectral break at 5 - 50 MeV because harder photons are absorbed by radiation scattered in the wind.Comment: 20 pages, accepted to Ap

    The influence of magnetic field geometry on magnetars X-ray spectra

    Get PDF
    Nowadays, the analysis of the X-ray spectra of magnetically powered neutron stars or magnetars is one of the most valuable tools to gain insight into the physical processes occurring in their interiors and magnetospheres. In particular, the magnetospheric plasma leaves a strong imprint on the observed X-ray spectrum by means of Compton up-scattering of the thermal radiation coming from the star surface. Motivated by the increased quality of the observational data, much theoretical work has been devoted to develop Monte Carlo (MC) codes that incorporate the effects of resonant Compton scattering in the modeling of radiative transfer of photons through the magnetosphere. The two key ingredients in this simulations are the kinetic plasma properties and the magnetic field (MF) configuration. The MF geometry is expected to be complex, but up to now only mathematically simple solutions (self-similar solutions) have been employed. In this work, we discuss the effects of new, more realistic, MF geometries on synthetic spectra. We use new force-free solutions in a previously developed MC code to assess the influence of MF geometry on the emerging spectra. Our main result is that the shape of the final spectrum is mostly sensitive to uncertain parameters of the magnetospheric plasma, but the MF geometry plays an important role on the angle-dependence of the spectra.Comment: 6 pages, 4 figures To appear in Proceedings of II Iberian Nuclear Astrophysics Meeting held in Salamanca, September 22-23, 201
    • …
    corecore