252 research outputs found

    Optimal Placement Algorithms for Virtual Machines

    Full text link
    Cloud computing provides a computing platform for the users to meet their demands in an efficient, cost-effective way. Virtualization technologies are used in the clouds to aid the efficient usage of hardware. Virtual machines (VMs) are utilized to satisfy the user needs and are placed on physical machines (PMs) of the cloud for effective usage of hardware resources and electricity in the cloud. Optimizing the number of PMs used helps in cutting down the power consumption by a substantial amount. In this paper, we present an optimal technique to map virtual machines to physical machines (nodes) such that the number of required nodes is minimized. We provide two approaches based on linear programming and quadratic programming techniques that significantly improve over the existing theoretical bounds and efficiently solve the problem of virtual machine (VM) placement in data centers

    Human monoclonal antibodies to SARS-coronavirus inhibit infection by different mechanisms

    Get PDF
    AbstractSARS-CoV causes an acute infection making targeted passive immunotherapy an attractive treatment strategy. We previously generated human mAbs specific to the S1 region of SARS-CoV S protein. These mAbs bind epitopes within the receptor binding domain (RBD) or upstream of the RBD. We show that mAbs recognizing epitopes within the RBD inhibit infection by preventing viral attachment to the cellular receptor. One mAb binds upstream of the RBD and prevents viral entry by inhibiting a post-binding event. Evaluation of several mAbs demonstrated varying ability of the mAbs to select escape mutants when used individually. However, a mixture of antibodies could effectively neutralize a range of mutant viruses. These data strongly suggest that a mixture containing antibodies recognizing distinct regions and targeting more than one step in viral entry is likely to be more effective in neutralizing the virus and suppressing the generation of escape mutants, and thus potentially constitute a highly effective passive immunotherapy

    miR-30 Regulates Mitochondrial Fission through Targeting p53 and the Dynamin-Related Protein-1 Pathway

    Get PDF
    miRNAs participate in the regulation of apoptosis. However, it remains largely unknown as to how miRNAs are integrated into the apoptotic program. Mitochondrial fission is involved in the initiation of apoptosis. It is not yet clear whether miRNAs are able to regulate mitochondrial fission. Here we report that miR-30 family members are able to regulate apoptosis by targeting the mitochondrial fission machinery. Our data show that miR-30 family members can inhibit mitochondrial fission and the consequent apoptosis. In exploring the underlying molecular mechanism, we identified that miR-30 family members can suppress p53 expression. In response to the apoptotic stimulation, the expression levels of miR-30 family members were reduced, whereas p53 was upregulated. p53 transcriptionally activated the mitochondrial fission protein, dynamin-related protein-1 (Drp1). The latter conveyed the apoptotic signal of p53 by initiating the mitochondrial fission program. miR-30 family members inhibited mitochondrial fission through suppressing the expression of p53 and its downstream target Drp1. Our data reveal a novel model in which a miRNA can regulate apoptosis through targeting the mitochondrial fission machinery

    A single high‐fat meal alters human soluble RAGE profiles and PBMC RAGE expression with no effect of prior aerobic exercise

    Full text link
    A high‐fat diet can induce inflammation and metabolic diseases such as diabetes and atherosclerosis. The receptor for advanced glycation endproducts (RAGE) plays a critical role in metabolic disease pathophysiology and the soluble form of the receptor (sRAGE) can mitigate these effects. However, little is known about RAGE in the postprandial condition and the effect of exercise in this context. Thus, we aimed to determine the effects of a single high‐fat meal (HFM) with and without prior exercise on peripheral blood mononuclear cell (PBMC) RAGE biology. Healthy males (n = 12) consumed a HFM on two occasions, one without prior exercise and one 16–18 hours following acute aerobic exercise. Total soluble RAGE (sRAGE) and endogenous secretory RAGE (esRAGE) were determined via ELISA and cleaved RAGE (cRAGE) was calculated as the difference between the two. Isolated PBMCs were analyzed for RAGE, ADAM10, TLR4, and MyD88 protein expression and ADAM10 activity. The HFM significantly (P < 0.01) attenuated sRAGE, esRAGE, and cRAGE by 9.7%, 6.9%, and 10.5%, respectively. Whereas, the HFM increased PBMC RAGE protein expression by 10.3% (P < 0.01), there was no meal effect on PBMC TLR4, MYD88, or ADAM10 protein expression, nor ADAM10 activity. There was also no exercise effect on any experimental outcomes. These findings suggest that PBMC RAGE and soluble RAGE may be important in the postprandial response to a HFM, and that prior aerobic exercise does not alter these processes in young healthy adult males. The mechanisms by which a HFM induces RAGE expression and reduces circulating soluble RAGE isoforms requires further study.Receptor for advanced glycation endproducts expression differs among circulating immune cell populations.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145399/1/phy213811_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145399/2/phy213811.pd

    Growth characteristics in individuals with osteogenesis imperfecta in North America: results from a multicenter study.

    Get PDF
    PurposeOsteogenesis imperfecta (OI) predisposes people to recurrent fractures, bone deformities, and short stature. There is a lack of large-scale systematic studies that have investigated growth parameters in OI.MethodsUsing data from the Linked Clinical Research Centers, we compared height, growth velocity, weight, and body mass index (BMI) in 552 individuals with OI. Height, weight, and BMI were plotted on Centers for Disease Control and Prevention normative curves.ResultsIn children, the median z-scores for height in OI types I, III, and IV were -0.66, -6.91, and -2.79, respectively. Growth velocity was diminished in OI types III and IV. The median z-score for weight in children with OI type III was -4.55. The median z-scores for BMI in children with OI types I, III, and IV were 0.10, 0.91, and 0.67, respectively. Generalized linear model analyses demonstrated that the height z-score was positively correlated with the severity of the OI subtype (P &lt; 0.001), age, bisphosphonate use, and rodding (P &lt; 0.05).ConclusionFrom the largest cohort of individuals with OI, we provide median values for height, weight, and BMI z-scores that can aid the evaluation of overall growth in the clinic setting. This study is an important first step in the generation of OI-specific growth curves

    Deep-learning-driven quantification of interstitial fibrosis in digitized kidney biopsies

    Full text link
    Interstitial fibrosis and tubular atrophy (IFTA) on a renal biopsy are strong indicators of disease chronicity and prognosis. Techniques that are typically used for IFTA grading remain manual, leading to variability among pathologists. Accurate IFTA estimation using computational techniques can reduce this variability and provide quantitative assessment. Using trichrome-stained whole-slide images (WSIs) processed from human renal biopsies, we developed a deep-learning framework that captured finer pathologic structures at high resolution and overall context at the WSI level to predict IFTA grade. WSIs (n = 67) were obtained from The Ohio State University Wexner Medical Center. Five nephropathologists independently reviewed them and provided fibrosis scores that were converted to IFTA grades: ≤10% (none or minimal), 11% to 25% (mild), 26% to 50% (moderate), and >50% (severe). The model was developed by associating the WSIs with the IFTA grade determined by majority voting (reference estimate). Model performance was evaluated on WSIs (n = 28) obtained from the Kidney Precision Medicine Project. There was good agreement on the IFTA grading between the pathologists and the reference estimate (κ = 0.622 ± 0.071). The accuracy of the deep-learning model was 71.8% ± 5.3% on The Ohio State University Wexner Medical Center and 65.0% ± 4.2% on Kidney Precision Medicine Project data sets. Our approach to analyzing microscopic- and WSI-level changes in renal biopsies attempts to mimic the pathologist and provides a regional and contextual estimation of IFTA. Such methods can assist clinicopathologic diagnosis.U01 DK085660 - NIDDK NIH HHS; RF1 AG062109 - NIA NIH HHS; R21 CA253498 - NCI NIH HHS; R21 DK119751 - NIDDK NIH HHS; R01 HL132325 - NHLBI NIH HHS; UL1 TR001430 - NCATS NIH HHS; R56 AG062109 - NIA NIH HHS; R21 DK119740 - NIDDK NIH HHShttps://www.medrxiv.org/content/10.1101/2021.01.03.21249179v1.full.pd

    IL-1β Promotes TGF-β1 and IL-2 Dependent Foxp3 Expression in Regulatory T Cells

    Get PDF
    Earlier, we have shown that GM-CSF-exposed CD8α− DCs that express low levels of pro-inflammatory cytokines IL-12 and IL-1β can induce Foxp3+ Tregs leading to suppression of autoimmunity. Here, we examined the differential effects of IL-12 and IL-1β on Foxp3 expression in T cells when activated in the presence and absence of DCs. Exogenous IL-12 abolished, but IL-1β enhanced, the ability of GM-CSF-exposed tolerogenic DCs to promote Foxp3 expression. Pre-exposure of DCs to IL-1β and IL-12 had only a modest effect on Foxp3− expressing T cells; however, T cells activated in the absence of DCs but in the presence of IL-1β or IL-12 showed highly significant increase and decrease in Foxp3+ T cell frequencies respectively suggesting direct effects of these cytokines on T cells and a role for IL-1β in promoting Foxp3 expression. Importantly, purified CD4+CD25+ cells showed a significantly higher ability to maintain Foxp3 expression when activated in the presence of IL-1β. Further analyses showed that the ability of IL-1β to maintain Foxp3 expression in CD25+ T cells was dependent on TGF-β1 and IL-2 expression in Foxp3+Tregs and CD25− effectors T cells respectively. Exposure of CD4+CD25+ T cells to IL-1β enhanced their ability to suppress effector T cell response in vitro and ongoing experimental autoimmune thyroidits in vivo. These results show that IL-1β can help enhance/maintain Tregs, which may play an important role in maintaining peripheral tolerance during inflammation to prevent and/or suppress autoimmunity

    Lifestyle factors and primary glioma and meningioma tumours in the Million Women Study cohort

    Get PDF
    Previous studies have reported inconsistent results on the effect of anthropometric and lifestyle factors on the risk of developing glioma or meningioma tumours. A prospective cohort of 1.3 million middle-aged women was used to examine these relationships. During 7.7 million women-years of follow-up, a total of 1563 women were diagnosed with a primary incident central nervous system tumour: 646 tumours were classified as glioma and 390 as meningioma. Our results show that height is related to the incidence of all central nervous system tumours with a risk of about 20% per 10 cm increase in height (relative risk=1.19, 95% CI=1.10–1.30 per 10 cm increase in height, P<0.001): the risks did not differ significantly between specified glioma and meningioma. Body mass index (BMI) was also related to central nervous system tumour incidence, with a risk of about 20% per 10 kg m−2 increase in BMI (relative risk=1.17, 95% CI=1.03–1.34 per 10 kg m−2 increase in BMI, P=0.02). Smoking status, alcohol intake, socioeconomic level, parity, age at first birth, and oral contraceptive use were not associated with the risk of glioma or meningioma tumours. In conclusion, for women in the United Kingdom, the incidence of glioma or meningioma tumours increases with increasing height and increasing BMI
    corecore