8 research outputs found
Mapping the Complete Reaction Path of a Complex Photochemical Reaction
We probe the dynamics of dissociating CS2 molecules across the entire reaction pathway upon excitation. Photoelectron spectroscopy measurements using laboratory-generated femtosecond extreme ultraviolet pulses monitor the competing dissociation, internal conversion, and intersystem crossing dynamics. Dissociation occurs either in the initially excited singlet manifold or, via intersystem crossing, in the triplet manifold. Both product channels are monitored and show that despite being more rapid, the singlet dissociation is the minor product and that triplet state products dominate the final yield. We explain this by consideration of accurate potential energy curves for both the singlet and triplet states. We propose that rapid internal conversion stabilises the singlet population dynamically, allowing for singlet-triplet relaxation via intersystem crossing and efficient formation of spin-forbidden dissociation products on longer timescales. The study demonstrates the importance of measuring the full reaction pathway for defining accurate reaction mechanisms
Photodissociation dynamics of CH3I probed via multiphoton ionisation photoelectron spectroscopy
The dissociation dynamics of CH3I is investigated on the red (269 nm) and blue (255 nm) side of the absorption maximum of the A-band. Using a multiphoton ionisation probe in a time-resolved photoelectron imaging experiment we observe very different dynamics at the two wavelengths, with significant differences in the measured lifetime and dynamic structure. The differences are explained in terms of changes in excitation cross-sections of the accessible 3Q0 and 1Q1 states and the subsequent dynamics upon each of them. The measurements support the existing literature on the rapid dissociation dynamics on the red side of the absorption maximum at 269 nm which is dominated by the dynamics along the 3Q0 state. At 255 nm we observe similar dynamics along the 3Q0 state but also a significant contribution from the 1Q1 state. The dynamics along the 1Q1 potential show a more complex structure in the photoelectron spectrum and a significantly increased lifetime, indicative of a more complex reaction pathway
Determining Orientations of Optical Transition Dipole Moments Using Ultrafast X-ray Scattering
Identification
of the initially prepared, optically active state
remains a challenging problem in many studies of ultrafast photoinduced
processes. We show that the initially excited electronic state can
be determined using the anisotropic component of ultrafast time-resolved
X-ray scattering signals. The concept is demonstrated using the time-dependent
X-ray scattering of <i>N</i>-methyl morpholine in the gas
phase upon excitation by a 200 nm linearly polarized optical pulse.
Analysis of the angular dependence of the scattering signal near time
zero renders the orientation of the transition dipole moment in the
molecular frame and identifies the initially excited state as the
3p<sub><i>z</i></sub> Rydberg state, thus bypassing the
need for further experimental studies to determine the starting point
of the photoinduced dynamics and clarifying inconsistent computational
results
Ab-Initio Surface Hopping and Multiphoton Ionisation Study of the Photodissociation Dynamics of CS2
New ab initio surface hopping simulations of the excited state dynamics of CS2 including spin-orbit coupling are compared to new experimental measurements using a multiphoton ionisation probe in a photoelectron spectroscopy experiment. The calculations highlight the importance of the triplet states even in the very early time dynamics of the dissociation process and allow us to unravel the signatures in the experimental spectrum, linking the observed changes to both electronic and nuclear degrees of freedom within the molecule