9 research outputs found

    In vivo localization at the cellular level of stilbene fluorescence induced by Plasmopara viticola in grapevine leaves

    Get PDF
    Accurate localization of phytoalexins is a key for better understanding their role. This work aims to localize stilbenes, the main phytoalexins of grapevine. The cellular localization of stilbene fluorescence induced by Plasmopara viticola, the agent of downy mildew, was determined in grapevine leaves of very susceptible, susceptible, and partially resistant genotypes during infection. Laser scanning confocal microscopy and microspectrofluorimetry were used to acquire UV-excited autofluorescence three-dimensional images and spectra of grapevine leaves 5–6 days after inoculation. This noninvasive technique of investigation in vivo was completed with in vitro spectrofluorimetric studies on pure stilbenes as their fluorescence is largely affected by the physicochemical environment in various leaf compartments. Viscosity was the major physicochemical factor influencing stilbene fluorescence intensity, modifying fluorescence yield by more than two orders of magnitude. Striking differences in the localization of stilbene fluorescence induced by P. viticola were observed between the different genotypes. All inoculated genotypes displayed stilbene fluorescence in cell walls of guard cells and periclinal cell walls of epidermal cells. Higher fluorescence intensity was observed in guard-cell walls than in any other compartment due to increased local viscosity. In addition stilbene fluorescence was found in epidermal cell vacuoles of the susceptible genotype and in the infected spongy parenchyma of the partially resistant genotype. The very susceptible genotype was devoid of fluorescence both in the epidermal vacuoles and the mesophyll. This strongly suggests that the resistance of grapevine leaves to P. viticola is correlated with the pattern of localization of induced stilbenes in host tissues

    Study of phenolic compounds involved in the response of grapevine leaves to downy mildew

    No full text
    MaĂźtriser l’impact des maladies sur les cultures est un dĂ©fi majeur de l’agriculture moderne. Cette prĂ©occupation est un aspect important de l’optimisation de la productivitĂ©, notamment en viticulture. En France, le mildiou de la vigne causĂ© par Plasmopara viticola est une des maladies cryptogamiques responsable des Ă©pidĂ©mies les plus dĂ©vastatrices et les plus redoutĂ©es. Les traitements reposent sur l’utilisation prĂ©ventive, systĂ©matique et onĂ©reuse de composĂ©s chimiques antifongiques dont l’utilisation massive constitue un risque Ă  la fois pour l’homme et l’environnement. La rĂ©duction de l’utilisation de fongicide implique le dĂ©veloppement d’outils de diagnostic au champ, qui requiert la comprĂ©hension des interactions entre la plante et les agents pathogĂšnes. Les travaux de cette thĂšse pluridisciplinaire ont portĂ© sur le pathosystĂšme Plasmopara viticola - Vitis vinifera, notamment pour rĂ©pondre Ă  l’intĂ©rĂȘt croissant pour un outil de diagnostic en temps rĂ©el de la maladie utilisable au vignoble. Les stilbĂšnes sont des phytoalexines impliquĂ©s dans la dĂ©fense de certaines plantes supĂ©rieures vis-Ă -vis de stress biotiques et abiotiques. L’autofluorescence de ces composĂ©s phĂ©noliques, dont la biosynthĂšse est induite dans les feuilles de vigne par P. viticola, en fait un potentiel marqueur naturel de l’infection. En effet, la faible autofluorescence bleu-verte des feuilles de vigne saines est considĂ©rablement renforcĂ©e par l’autofluorescence violet-bleue des stilbĂšnes Ă  la surface de feuilles de vigne infectĂ©e par P. viticola. Cette Ă©tude a montrĂ© que quelque soit le niveau de rĂ©sistance du gĂ©notype, l’autofluorescence violet-bleue des stilbĂšnes induit par l’infection est prĂ©sente au niveau des parois des cellules de l’épiderme. En dehors de la concentration, la viscositĂ© s’est rĂ©vĂ©lĂ© ĂȘtre la principale variable physico-chimique influençant l’intensitĂ© de l’autofluorescence des stilbĂšnes dans les diffĂ©rents compartiments cellulaires des feuilles de vigne. Ceci explique la fluorescence intense des parois, particuliĂšrement rigides, des cellules de garde (stomates) des feuilles infectĂ©es. Le suivi cinĂ©tique journalier a rĂ©vĂ©lĂ© la nature transitoire de l’autofluorescence des stilbĂšnes lors de l’infection. La robustesse et l’intĂ©rĂȘt de ce signal a Ă©galement Ă©tĂ© validĂ©e par la mesure Ă  diffĂ©rentes Ă©chelles (de la cellule Ă  la feuille entiĂšre) et avec diffĂ©rentes mĂ©thodes fluorimĂ©triques. Les rĂ©sultats de ce travail ont permis des avancĂ©es sur la connaissance du rĂŽle de composĂ©s phĂ©noliques induits et constitutifs dans la dĂ©fense contre P. viticola. En plus de la localisation de l’autofluorescence des stilbĂšnes en surface des feuilles, la microscopie confocale couplĂ©e Ă  la microspectrofluorimetrie a rĂ©vĂ©lĂ© diffĂ©rentes localisations de ces phytoalexines dans la profondeur des tissus en corrĂ©lation avec le niveau de rĂ©sistance des gĂ©notypes. L’utilisation de l’autofluorescence des stilbĂšnes comme marqueur de l’infection a permis de mettre en Ă©vidence : 1) le fait que les flavonols constitutifs des feuilles de V. vinifera retardent le dĂ©veloppement de l’infection par P. viticola; et 2) le fait que les acides hydroxycinnamiques constitutifs ne semble pas participer Ă  la dĂ©fense contre P. viticola. Enfin, une nouvelle mĂ©thode de diagnostic non-destructive du mildiou sur feuille basĂ©e sur l’autofluorescence des stilbĂšnes a Ă©tĂ© dĂ©veloppĂ©e. Elle a montrĂ© une dĂ©tection prĂ©-symptomatique du mildiou sur les feuilles de vigne entiĂšres dĂšs le premier jour aprĂšs l’infection sur la face abaxiale et le troisiĂšme jour sur la face adaxiale. Cette mĂ©thode de diagnostic du mildiou a Ă©tĂ© validĂ©e au laboratoire notamment grĂące Ă  un prototype de capteur proximal dĂ©veloppĂ© en collaboration avec la sociĂ©tĂ© Force-A. La validation de la mĂ©thode au vignoble dans le cadre d’infection naturelle est la prochaine Ă©tape pour une utilisation de ce capteur optique dans le cadre de l’agriculture durable et de la sĂ©lection variĂ©tale.Controlling the impact of diseases on crops is a major challenge of modern agriculture. This concern is an important aspect of optimizing productivity, notably in viticulture. In France, downy mildew caused by Plasmopara viticola is a fungal disease responsible for the most devastating epidemics. The preventive and systematic treatments are expensive, while the massive use of antifungal chemicals is a risk to both humans and the environment. Reducing the use of fungicide involves the development of diagnostic tools in the field, which requires understanding the interactions between plants and pathogens. The work of this multidisciplinary thesis focused on the pathosystem Plasmopara viticola - Vitis vinifera, especially to meet the growing interest in a real-time diagnostic tool of disease applicable in the vineyard. Stilbenes are phytoalexins involved in the defense of certain higher plants against biotic and abiotic stresses. The autofluorescence of these phenolic compounds, whose biosynthesis is induced in grapevine leaves by P. viticola, makes it a potential marker of natural infection. Indeed, the low blue-green autofluorescence of grapevine leaves is greatly enhanced by the violet-blue autofluorescence of stilbenes on the surface of leaves infected by P. viticola. This study showed that whatever the level of resistance in various genotypes, violet-blue autofluorescence induced by stilbene is present in the walls of epidermal cells. In addition to their concentration, viscosity proved the main physico-chemical variable affecting the intensity of the autofluorescence of stilbenes in different compartments of vine leaves. This explains the intense fluorescence of the walls, particularly rigid, of guard cells (stomata) of infected leaves. Daily monitoring revealed a kinetic with a transient rise of the autofluorescence of stilbenes during infection. The robustness and value of this signal was also validated by measuring at different levels (cellular to whole leaf) and with various fluorimetric methods (imaging, spectroscopy, proximal sensing). These results advance our understanding of the role of constitutive and induced phenolic compounds in plant defence against P. viticola. In addition to a common location of the autofluorescence of stilbenes on the leaf surface, confocal microscopy coupled with microspectrofluorometry revealed distinctive localizations of these phytoalexins in the deep tissue correlated with the level of resistance in genotypes. This aspect no doubt needs broader testing. The use of autofluorescence of stilbene as a marker of infection allowed us to ascertain that: 1) constitutive flavonols of the leaves of V. vinifera retard the development of infection by P. viticola and 2) the constitutive hydroxycinnamic acids do not seem to participate in the defence against P. viticola. Finally, a new method for the non-destructive diagnosis of leaf infection based on the autofluorescence of stilbenes has been developed. We have demonstrated a pre-symptomatic detection of downy mildew on whole grape leaves from the first day after infection on the abaxial surface and from the third day on the adaxial surface. This method of diagnosis has been validated in the laboratory thanks to a proximal sensor prototype developed in collaboration with the company Force-A. The validation of the method in the vineyard in a context of natural infections is the next step for use of this optical sensor as a tool for sustainable agriculture and for genetic screening

    Etude des composés phénoliques impliqués dans la réponse des feuilles de vigne au mildiou

    No full text
    MaĂźtriser l impact des maladies sur les cultures est un dĂ©fi majeur de l agriculture moderne. Cette prĂ©occupation est un aspect important de l optimisation de la productivitĂ©, notamment en viticulture. En France, le mildiou de la vigne causĂ© par Plasmopara viticola est une des maladies cryptogamiques responsable des Ă©pidĂ©mies les plus dĂ©vastatrices et les plus redoutĂ©es. Les traitements reposent sur l utilisation prĂ©ventive, systĂ©matique et onĂ©reuse de composĂ©s chimiques antifongiques dont l utilisation massive constitue un risque Ă  la fois pour l homme et l environnement. La rĂ©duction de l utilisation de fongicide implique le dĂ©veloppement d outils de diagnostic au champ, qui requiert la comprĂ©hension des interactions entre la plante et les agents pathogĂšnes. Les travaux de cette thĂšse pluridisciplinaire ont portĂ© sur le pathosystĂšme Plasmopara viticola - Vitis vinifera, notamment pour rĂ©pondre Ă  l intĂ©rĂȘt croissant pour un outil de diagnostic en temps rĂ©el de la maladie utilisable au vignoble. Les stilbĂšnes sont des phytoalexines impliquĂ©s dans la dĂ©fense de certaines plantes supĂ©rieures vis-Ă -vis de stress biotiques et abiotiques. L autofluorescence de ces composĂ©s phĂ©noliques, dont la biosynthĂšse est induite dans les feuilles de vigne par P. viticola, en fait un potentiel marqueur naturel de l infection. En effet, la faible autofluorescence bleu-verte des feuilles de vigne saines est considĂ©rablement renforcĂ©e par l autofluorescence violet-bleue des stilbĂšnes Ă  la surface de feuilles de vigne infectĂ©e par P. viticola. Cette Ă©tude a montrĂ© que quelque soit le niveau de rĂ©sistance du gĂ©notype, l autofluorescence violet-bleue des stilbĂšnes induit par l infection est prĂ©sente au niveau des parois des cellules de l Ă©piderme. En dehors de la concentration, la viscositĂ© s est rĂ©vĂ©lĂ© ĂȘtre la principale variable physico-chimique influençant l intensitĂ© de l autofluorescence des stilbĂšnes dans les diffĂ©rents compartiments cellulaires des feuilles de vigne. Ceci explique la fluorescence intense des parois, particuliĂšrement rigides, des cellules de garde (stomates) des feuilles infectĂ©es. Le suivi cinĂ©tique journalier a rĂ©vĂ©lĂ© la nature transitoire de l autofluorescence des stilbĂšnes lors de l infection. La robustesse et l intĂ©rĂȘt de ce signal a Ă©galement Ă©tĂ© validĂ©e par la mesure Ă  diffĂ©rentes Ă©chelles (de la cellule Ă  la feuille entiĂšre) et avec diffĂ©rentes mĂ©thodes fluorimĂ©triques. Les rĂ©sultats de ce travail ont permis des avancĂ©es sur la connaissance du rĂŽle de composĂ©s phĂ©noliques induits et constitutifs dans la dĂ©fense contre P. viticola. En plus de la localisation de l autofluorescence des stilbĂšnes en surface des feuilles, la microscopie confocale couplĂ©e Ă  la microspectrofluorimetrie a rĂ©vĂ©lĂ© diffĂ©rentes localisations de ces phytoalexines dans la profondeur des tissus en corrĂ©lation avec le niveau de rĂ©sistance des gĂ©notypes. L utilisation de l autofluorescence des stilbĂšnes comme marqueur de l infection a permis de mettre en Ă©vidence : 1) le fait que les flavonols constitutifs des feuilles de V. vinifera retardent le dĂ©veloppement de l infection par P. viticola; et 2) le fait que les acides hydroxycinnamiques constitutifs ne semble pas participer Ă  la dĂ©fense contre P. viticola. Enfin, une nouvelle mĂ©thode de diagnostic non-destructive du mildiou sur feuille basĂ©e sur l autofluorescence des stilbĂšnes a Ă©tĂ© dĂ©veloppĂ©e. Elle a montrĂ© une dĂ©tection prĂ©-symptomatique du mildiou sur les feuilles de vigne entiĂšres dĂšs le premier jour aprĂšs l infection sur la face abaxiale et le troisiĂšme jour sur la face adaxiale. Cette mĂ©thode de diagnostic du mildiou a Ă©tĂ© validĂ©e au laboratoire notamment grĂące Ă  un prototype de capteur proximal dĂ©veloppĂ© en collaboration avec la sociĂ©tĂ© Force-A. La validation de la mĂ©thode au vignoble dans le cadre d infection naturelle est la prochaine Ă©tape pour une utilisation de ce capteur optique dans le cadre de l agriculture durable et de la sĂ©lection variĂ©tale.Controlling the impact of diseases on crops is a major challenge of modern agriculture. This concern is an important aspect of optimizing productivity, notably in viticulture. In France, downy mildew caused by Plasmopara viticola is a fungal disease responsible for the most devastating epidemics. The preventive and systematic treatments are expensive, while the massive use of antifungal chemicals is a risk to both humans and the environment. Reducing the use of fungicide involves the development of diagnostic tools in the field, which requires understanding the interactions between plants and pathogens. The work of this multidisciplinary thesis focused on the pathosystem Plasmopara viticola - Vitis vinifera, especially to meet the growing interest in a real-time diagnostic tool of disease applicable in the vineyard. Stilbenes are phytoalexins involved in the defense of certain higher plants against biotic and abiotic stresses. The autofluorescence of these phenolic compounds, whose biosynthesis is induced in grapevine leaves by P. viticola, makes it a potential marker of natural infection. Indeed, the low blue-green autofluorescence of grapevine leaves is greatly enhanced by the violet-blue autofluorescence of stilbenes on the surface of leaves infected by P. viticola. This study showed that whatever the level of resistance in various genotypes, violet-blue autofluorescence induced by stilbene is present in the walls of epidermal cells. In addition to their concentration, viscosity proved the main physico-chemical variable affecting the intensity of the autofluorescence of stilbenes in different compartments of vine leaves. This explains the intense fluorescence of the walls, particularly rigid, of guard cells (stomata) of infected leaves. Daily monitoring revealed a kinetic with a transient rise of the autofluorescence of stilbenes during infection. The robustness and value of this signal was also validated by measuring at different levels (cellular to whole leaf) and with various fluorimetric methods (imaging, spectroscopy, proximal sensing). These results advance our understanding of the role of constitutive and induced phenolic compounds in plant defence against P. viticola. In addition to a common location of the autofluorescence of stilbenes on the leaf surface, confocal microscopy coupled with microspectrofluorometry revealed distinctive localizations of these phytoalexins in the deep tissue correlated with the level of resistance in genotypes. This aspect no doubt needs broader testing. The use of autofluorescence of stilbene as a marker of infection allowed us to ascertain that: 1) constitutive flavonols of the leaves of V. vinifera retard the development of infection by P. viticola and 2) the constitutive hydroxycinnamic acids do not seem to participate in the defence against P. viticola. Finally, a new method for the non-destructive diagnosis of leaf infection based on the autofluorescence of stilbenes has been developed. We have demonstrated a pre-symptomatic detection of downy mildew on whole grape leaves from the first day after infection on the abaxial surface and from the third day on the adaxial surface. This method of diagnosis has been validated in the laboratory thanks to a proximal sensor prototype developed in collaboration with the company Force-A. The validation of the method in the vineyard in a context of natural infections is the next step for use of this optical sensor as a tool for sustainable agriculture and for genetic screening.PARIS11-SCD-Bib. Ă©lectronique (914719901) / SudocSudocFranceF

    Detection of downy mildew in the field on grapevine leaves using a new portable fluorescence sensor

    No full text
    International audienceDowny mildew is a major disease of grapevine caused by the oomycete Plasmopara viticola. It is at the origin of numerous fungicide treatments. In order to optimize these treatments and reduce their number, an early detection of the disease in the field is sought-after, preferably by non-destructive means for a precision agriculture approach. Stilbenes, the main phytoalexin of grapevine, are not present in healthy leaves. Their synthesis and accumulation is induced by P. viticola. They are fluorescent phenolic compounds, displaying violet-blue fluorescence (VBF). In the laboratory, VBF was used to assess stilbenes in vivo in grapevine leaves or as an indicator of the development of the infection by P. viticola. So, this fluorescence signal could potentially be used as a non-invasive proxy for the presence of downy mildew. A new portable sensor for stilbene VBF, Mx-330, was developed by the company FORCE-A (Orsay, France). The present study confirmed that this new sensor could be used in the vineyards to detect downy mildew. Thanks to its presence also on the adaxial leaf side, P. viticola-induced stilbene VBF is suitable for vehicle-mounted proximal sensing

    Optical detection of downy mildew in grapevine leaves: daily kinetics of autofluorescence upon infection.

    Get PDF
    A 15-day survey of autofluorescence has been conducted upon infection by downy mildew [Plasmopara viticola (Berk. & M.A. Curtis) Berl. & de Toni] of leaves of a susceptible grapevine genotype. Different autofluorescence signals were followed from the cellular to the whole-leaf level by using four types of devices for fluorosensing: a macroscope, a spectrofluorimeter, a portable field optical sensor (the Multiplex 3), and a field fluorescence sensor prototype with 335 nm excitation. It was shown for the first time, by the three different techniques and at three different scales, that the stilbene-dependent violet-blue autofluorescence (VBF) had a transitory behaviour, increasing to a maximum 6 days post-inoculation (DPI) and then decreasing to a constant lower level, nevertheless significantly higher than in the control leaf. This behaviour could be sensed from both sides of the leaf. On the abaxial side, VBF could discriminate the presence of infection from 1 DPI, and on the adaxial side from 3 DPI. There was a constant increase in blue-excited green fluorescence starting from 8 DPI, concomitant with a decrease in leaf chlorophyll content sensed by one reflectance and two fluorescence indices available on the Multiplex 3 sensor. These results show that a pre-symptomatic and symptomatic sensing of downy mildew is possible by autofluorescence-based sensors, and this is potentially applicable in the field

    Correlative Analysis of Fluorescent Phytoalexins by Mass Spectrometry Imaging and Fluorescence Microscopy in Grapevine Leaves

    No full text
    International audiencePlant response to their environment stresses is a complex mechanism involving secondary metabolites. Stilbene phytoalexins, namely resveratrol, pterostilbene, piceids and viniferins play a key role in grapevine (Vitis vinifera) leaf defense. Despite their well-established qualities, conventional analyses such as HPLC-DAD or LC-MS lose valuable information on metabolite localization during the extraction process. To overcome this issue, a correlative analysis combining mass spectroscopy imaging (MSI) and fluorescence imaging was developed to localize in situ stilbenes on the same stressed grapevine leaves. High-resolution images of the stilbene fluorescence provided by macroscopy were supplemented by specific distributions and structural information concerning resveratrol, pterostilbene, and piceids obtained by MSI. The two imaging techniques led to consistent and complementary data on the stilbene spatial distribution for the two stresses addressed: UV-C irradiation and infection by Plasmopara viticola. Results emphasize that grapevine leaves react differently depending on the stress. A rather uniform synthesis of stilbenes is induced after UV-C irradiation, whereas a more localized synthesis of stilbenes in stomata guard cells and cell walls is induced by P. viticola infection. Finally, this combined imaging approach could be extended to map phytoalexins of various plant tissues with resolution approaching the cellular level

    The Wnt/Ca 2+ pathway is involved in interneuronal communication mediated by tunneling nanotubes

    No full text
    International audienceTunneling nanotubes (TNTs) are actin-based transient tubular connections that allow direct communication between distant cells. TNTs play an important role in several physiological (development, immunity, and tissue regeneration) and pathological (cancer, neurodegeneration, and pathogens transmission) processes. Here, we report that the Wnt/Ca2+ pathway, an intracellular cascade that is involved in actin cytoskeleton remodeling, has a role in TNT formation and TNT-mediated transfer of cargoes. Specifically, we found that Ca2+ /calmodulin-dependent protein kinase II (CaMKII), a transducer of the Wnt/Ca2+ pathway, regulates TNTs in a neuronal cell line and in primary neurons. We identified the ÎČ isoform of CaMKII as a key molecule in modulating TNT formation and transfer, showing that this depends on the actin-binding activity of the protein. Finally, we found that the transfer of vesicles and aggregated α-synuclein between primary neurons can be regulated by the activation of the Wnt/Ca2+ pathway. Our findings suggest that Wnt/Ca2+ pathway could be a novel promising target for therapies designed to impair TNT-mediated propagation of pathogens
    corecore