83 research outputs found

    Black Hole Starvation and Bulge Evolution in a Milky Way-like Galaxy

    Get PDF
    We present a new zoom-in hydrodynamical simulation, "Erisbh", which follows the cosmological evolution and feedback effects of a supermassive black hole at the center of a Milky Way-type galaxy. ErisBH shares the same initial conditions, resolution, recipes of gas cooling, star formation and feedback, as the close Milky Way-analog "Eris", but it also includes prescriptions for the formation, growth and feedback of supermassive black holes. We find that the galaxy's central black hole grows mainly through mergers with other black holes coming from infalling satellite galaxies. The growth by gas accretion is minimal because very little gas reaches the sub-kiloparsec scales. The final black hole is, at z=0, about 2.6 million solar masses and it sits closely to the position of SgrA* on the MBH-MBulge and MBH-sigma planes, in a location consistent with what observed for pseudobulges. Given the limited growth due to gas accretion, we argue that the mass of the central black hole should be above 10^5 solar masses already at z~8. The effect of AGN feedback on the host galaxy is limited to the very central few hundreds of parsecs. Despite being weak, AGN feedback seems to be responsible for the limited growth of the central bulge with respect to the original Eris, which results in a significantly flatter rotation curve in the inner few kiloparsecs. Moreover, the disk of ErisBH is more prone to instabilities, as its bulge is smaller and its disk larger then Eris. As a result, the disk of ErisBH undergoes a stronger dynamical evolution relative to Eris and around z=0.3 a weak bar grows into a strong bar of a few disk scale lengths in size. The bar triggers a burst of star formation in the inner few hundred parsecs, provides a modest amount of new fuel to the central black hole, and causes the bulge of ErisBH to have, by z=0, a box/peanut morphology.(Abridged)Comment: 16 pages, 16 figures. Submitted to MNRA

    Bar-driven evolution and quenching of spiral galaxies in cosmological simulations

    Full text link
    We analyse the output of the hi-res cosmological zoom-in simulation ErisBH to study self-consistently the formation of a strong stellar bar in a Milky Way-type galaxy and its effect on the galactic structure, on the central gas distribution and on star formation. The simulation includes radiative cooling, star formation, SN feedback and a central massive black hole which is undergoing gas accretion and is heating the surroundings via thermal AGN feedback. A large central region in the ErisBH disk becomes bar-unstable after z~1.4, but a clear bar-like structure starts to grow significantly only after z~0.4, possibly triggered by the interaction with a massive satellite. At z~0.1 the bar reaches its maximum radial extent of l~2.2 kpc. As the bar grows, it becomes prone to buckling instability, which we quantify based on the anisotropy of the stellar velocity dispersion. The actual buckling event is observable at z~0.1, resulting in the formation of a boxy-peanut bulge clearly discernible in the edge-on view of the galaxy at z=0. The bar in ErisBH does not dissolve during the formation of the bulge but remains strongly non-axisymmetric down to the resolution limit of ~100 pc at z=0. During its early growth, the bar exerts a strong torque on the gas within its extent and drives gas inflows that enhance the nuclear star formation on sub-kpc scales. Later on the infalling gas is nearly all consumed into stars and, to a lesser extent, accreted onto the central black hole, leaving behind a gas-depleted region within the central ~2 kpc. Observations would more likely identify a prominent, large-scale bar at the stage when the galactic central region has already been quenched. Bar-driven quenching may play an important role in disk-dominated galaxies at all redshift. [Abridged]Comment: 13 pages, 12 figures, MNRAS submitte

    Growing black holes and galaxies: black hole accretion versus star formation rate

    Full text link
    We present a new suite of hydrodynamical simulations and use it to study, in detail, black hole and galaxy properties. The high time, spatial and mass resolution, and realistic orbits and mass ratios, down to 1:6 and 1:10, enable us to meaningfully compare star formation rate (SFR) and BH accretion rate (BHAR) timescales, temporal behaviour and relative magnitude. We find that (i) BHAR and galaxy-wide SFR are typically temporally uncorrelated, and have different variability timescales, except during the merger proper, lasting ~0.2-0.3 Gyr. BHAR and nuclear (<100 pc) SFR are better correlated, and their variability are similar. Averaging over time, the merger phase leads typically to an increase by a factor of a few in the BHAR/SFR ratio. (ii) BHAR and nuclear SFR are intrinsically proportional, but the correlation lessens if the long-term SFR is measured. (iii) Galaxies in the remnant phase are the ones most likely to be selected as systems dominated by an active galactic nucleus (AGN), because of the long time spent in this phase. (iv) The timescale over which a given diagnostic probes the SFR has a profound impact on the recovered correlations with BHAR, and on the interpretation of observational data.Comment: Accepted for publication in MNRA

    Supermassive black hole pairs in clumpy galaxies at high redshift: delayed binary formation and concurrent mass growth

    Full text link
    Massive gas-rich galaxy discs at z13z \sim 1-3 host massive star-forming clumps with typical baryonic masses in the range 10710810^7-10^8~M_{\odot} which can affect the orbital decay and concurrent growth of supermassive black hole (BH) pairs. Using a set of high-resolution simulations of isolated clumpy galaxies hosting a pair of unequal-mass BHs, we study the interaction between massive clumps and a BH pair at kpc scales, during the early phase of the orbital decay. We find that both the interaction with massive clumps and the heating of the cold gas layer of the disc by BH feedback tend to delay significantly the orbital decay of the secondary, which in many cases is ejected and then hovers for a whole Gyr around a separation of 1--2 kpc. In the envelope, dynamical friction is weak and there is no contribution of disc torques: these lead to the fastest decay once the orbit of the secondary BH has circularised in the disc midplane. In runs with larger eccentricities the delay is stronger, although there are some exceptions. We also show that, even in discs with very sporadic transient clump formation, a strong spiral pattern affects the decay time-scale for BHs on eccentric orbits. We conclude that, contrary to previous belief, a gas-rich background is not necessarily conducive to a fast BH decay and binary formation, which prompts more extensive investigations aimed at calibrating event-rate forecasts for ongoing and future gravitational-wave searches, such as with Pulsar Timing Arrays and the future evolved Laser Interferometer Space Antenna.Comment: Accepted by MNRA

    Observability of Dual Active Galactic Nuclei in Merging Galaxies

    Full text link
    Supermassive black holes (SMBHs) have been detected in the centers of most nearby massive galaxies. Galaxies today are the products of billions of years of galaxy mergers, but also billions of years of SMBH activity as active galactic nuclei (AGNs) that is connected to galaxy mergers. In this context, detection of AGN pairs should be relatively common. Observationally, however, dual AGN are scant, being just a few percent of all AGN. In this Letter we investigate the triggering of AGN activity in merging galaxies via a suite of high resolution hydrodynamical simulations. We follow the dynamics and accretion onto the SMBHs as they move from separations of tens of kiloparsecs to tens of parsecs. Our resolution, cooling and star formation implementation produce an inhomogeneous, multi-phase interstellar medium, allowing us to accurately trace star formation and accretion onto the SMBHs. We study the impact of gas content, morphology, and mass ratio, allowing us to study AGN activity and dynamics across a wide range of relevant conditions. We test when the two AGN are simultaneously detectable, for how long and at which separations. We find that strong dual AGN activity occurs during the late phases of the mergers, at small separations (<1-10 kpc) below the resolution limit of most surveys. Much of the SMBH accretion is not simultaneous, limiting the dual AGN fraction detectable through imaging and spectroscopy to a few percent, in agreement with observational samples.Comment: Published in ApJL; additional material available at http://www.astro.lsa.umich.edu/~svanwas/dualAGN.htm

    Black hole accretion versus star formation rate: theory confronts observations

    Full text link
    We use a suite of hydrodynamical simulations of galaxy mergers to compare star formation rate (SFR) and black hole accretion rate (BHAR) for galaxies before the interaction ('stochastic' phase), during the `merger' proper, lasting ~0.2-0.3 Gyr, and in the `remnant' phase. We calculate the bi-variate distribution of SFR and BHAR and define the regions in the SFR-BHAR plane that the three phases occupy. No strong correlation between BHAR and galaxy-wide SFR is found. A possible exception are galaxies with the highest SFR and the highest BHAR. We also bin the data in the same way used in several observational studies, by either measuring the mean SFR for AGN in different luminosity bins, or the mean BHAR for galaxies in bins of SFR. We find that the apparent contradiction or SFR versus BHAR for observed samples of AGN and star forming galaxies is actually caused by binning effects. The two types of samples use different projections of the full bi-variate distribution, and the full information would lead to unambiguous interpretation. We also find that a galaxy can be classified as AGN-dominated up to 1.5 Gyr after the merger-driven starburst took place. Our study is consistent with the suggestion that most low-luminosity AGN hosts do not show morphological disturbances.Comment: MNRAS Letters, in pres

    Growth and activity of black holes in galaxy mergers with varying mass ratios

    Full text link
    We study supermassive black holes (BHs) in merging galaxies, using a suite of hydrodynamical simulations with very high spatial (~10 pc) and temporal (~1 Myr) resolution, where we vary the initial mass ratio, the orbital configuration, and the gas fraction. (i) We address the question of when and why, during a merger, increased BH accretion occurs, quantifying gas inflows and BH accretion rates. (ii) We also quantify the relative effectiveness in inducing AGN activity of merger-related versus secular-related causes, by studying different stages of the encounter: the stochastic (or early) stage, the (proper) merger stage, and the remnant (or late) stage. (iii) We assess which galaxy mergers preferentially enhance BH accretion, finding that the initial mass ratio is the most important factor. (iv) We study the evolution of the BH masses, finding that the BH mass contrast tends to decrease in minor mergers and to increase in major mergers. This effect hints at the existence of a preferential range of mass ratios for BHs in the final pairing stages. (v) In both merging and dynamically quiescent galaxies, the gas accreted by the BH is not necessarily the gas with lowlow angular momentum, but the gas that losesloses angular momentum.Comment: Accepted for publication in MNRAS, 23 pages, 22 figures, 3 table
    corecore