141 research outputs found

    Gadopentetate but not gadobutrol accumulates in the dentate nucleus of multiple sclerosis patients

    Get PDF
    BACKGROUND: Previous studies have postulated an association between dentate nucleus T1 hyperintensity and multiple sclerosis (MS)-related progressive neurodegeneration. Therefore, MS patients have been excluded from most studies investigating brain deposition of gadolinium-based contrast agents (GBCAs). OBJECTIVE: To study the hypothesis that dentate nucleus T1 hyperintensity in MS patients is associated with GBCA administration. METHODS: In a cohort of 97 MS patients, the dentate-to-pons signal intensity ratio (DPSIR) was calculated for 265 consecutive T1-weighted magnetic resonance (MR) scans (including sessions with and without the administration of GBCA). Patients exclusively received either gadopentetate dimeglumine (Gd-DTPA, linear) or gadobutrol (Gd-BT-DO3A, macrocyclic). RESULTS: In patients receiving Gd-DTPA, DPSIR increased significantly between the first and the last scan (+0.009, p < 0.001), and following magnetic resonance imaging (MRI) with Gd-DTPA administration as compared to following an MRI without Gd-DTPA administration (+0.005 vs -0.001; p = 0.022). Additionally, there was a positive linear relationship between the number of Gd-DTPA administrations and the increase in DPSIR (p = 0.017). No DPSIR increase was observed after Gd-BT-DO3A administration. CONCLUSION: Dentate nucleus T1 hyperintensity in MS patients is associated with Gd-DTPA (but not Gd-BT-DO3A) administration, suggesting an alternative explanation for the association of T1 hyperintensity with disease duration and severity

    Temporal visual resolution and disease severity in MS

    Get PDF
    OBJECTIVE: To examine temporal visual resolution assessed as critical flicker frequency (CFF) in patients with MS and to investigate associations with visual system damage and general disability and cognitive function. METHODS: Thirty-nine patients with MS and 31 healthy controls (HCs) were enrolled in this cross-sectional study and underwent CFF testing, high- and low-contrast visual acuity, alertness and information processing speed using the paced auditory serial addition task (PASAT), and retinal optical coherence tomography (OCT). In patients with MS, visual evoked potentials (VEPs) and Expanded Disability Status Scale (EDSS) scores were assessed. RESULTS: CFF in patients with MS (mean ± SD: 40.9 ± 4.4 Hz) was lower than in HCs (44.8 ± 4.4 Hz, p < 0.001). There was no significant CFF difference between eyes with and without previous optic neuritis (ON). CFF was not associated with visual acuity, VEP latency, the peripapillary retinal nerve fiber layer thickness, and the combined ganglion cell and inner plexiform layer volume. Instead, reduced CFF was associated with worse EDSS scores (r(2) = 0.26, p < 0.001) and alertness (r(2) = 0.42, p = 0.00042) but not with PASAT (p = 0.33). CONCLUSION: CFF reduction in MS occurs independently of ON and structural visual system damage. Its association with the EDSS score and alertness suggests that CFF reflects global disease processes and higher cortical processing rather than focal optic nerve or retinal damage

    Normal volumes and microstructural integrity of deep gray matter structures in AQP4+ NMOSD

    Get PDF
    OBJECTIVE: To assess volumes and microstructural integrity of deep gray matter structures in a homogeneous cohort of patients with neuromyelitis optica spectrum disorder (NMOSD). METHODS: This was a cross-sectional study including 36 aquaporin-4 antibody-positive (AQP4 Ab-positive) Caucasian patients with NMOSD and healthy controls matched for age, sex, and education. Volumetry of deep gray matter structures (DGM; thalamus, caudate, putamen, globus pallidus, hippocampus, amygdala, nucleus accumbens) was performed using 2 independent automated methods. Microstructural integrity was assessed based on diffusion tensor imaging. RESULTS: Both volumetric analysis methods consistently revealed similar volumes of DGM structures in patients and controls without significant group differences. Moreover, no differences in DGM microstructural integrity were observed between groups. CONCLUSIONS: Deep gray matter structures are not affected in AQP4 Ab-positive Caucasian patients with NMOSD. NMOSD imaging studies should be interpreted with respect to Ab status, educational background, and ethnicity of included patients

    Quantitative 7T MRI does not detect occult brain damage in neuromyelitis optica

    Get PDF
    Objective: To investigate and compare occult damages in aquaporin-4 (AQP4)-rich periependymal regions in patients with neuromyelitis optica spectrum disorder (NMOSD) vs healthy controls (HCs) and patients with multiple sclerosis (MS) applying quantitative T1 mapping at 7 Tesla (T) in a cross-sectional study. Methods: Eleven patients with NMOSD (median Expanded Disability Status Scale [EDSS] score 3.5, disease duration 9.3 years, age 43.7 years, and 11 female) seropositive for anti-AQP4 antibodies, 7 patients with MS (median EDSS score 1.5, disease duration 3.6, age 30.2 years, and 4 female), and 10 HCs underwent 7T MRI. The imaging protocol included T2*-weighted (w) imaging and an MP2RAGE sequence yielding 3D T1w images and quantitative T1 maps. We semiautomatically marked the lesion-free periependymal area around the cerebral aqueduct and the lateral, third, and fourth ventricles to finally measure and compare the T1 relaxation time within these areas. Results: We did not observe any differences in the T1 relaxation time between patients with NMOSD and HCs (all > 0.05). Contrarily, the T1 relaxation time was longer in patients with MS vs patients with NMOSD (lateral ventricle = 0.056, third ventricle = 0.173, fourth ventricle = 0.016, and cerebral aqueduct = 0.048) and vs HCs (third ventricle = 0.027, fourth ventricle = 0.013, lateral ventricle = 0.043, and cerebral aqueduct = 0.005). Conclusion: Unlike in MS, we did not observe subtle T1 changes in lesion-free periependymal regions in NMOSD, which supports the hypothesis of a rather focal than diffuse brain pathology in NMOSD

    Low contrast visual acuity testing is associated with cognitive performance in multiple sclerosis: a cross-sectional pilot study

    Get PDF
    Background: Cognitive impairment and visual deterioration are two key clinical symptoms in MS and affect 50 to 80% of patients. Little is known about the influence of cognitive impairment on visual tests recommended for MS such as low contrast sensitivity testing. Our objective was to investigate whether low contrast sensitivity testing is influenced by cognitive impairment in multiple sclerosis (MS) patients. Methods: Cross-sectional study including 89 patients with relapsing-remitting MS. All patients received cognitive evaluation using Rao’s Brief Repeatable Battery of Neuropsychological Testing (BRB-N). Visual assessments included low contrast sensitivity (CS) by functional acuity contrast testing and high contrast visual acuity (VA) using ETDRS charts. Retinal morphology as visual impairment correlate was measured using retinal nerve fiber layer (RNFL) thickness by optical coherence tomography. Results: In combined analyses using generalized estimating equation models, Paced Auditory Serial Addition Test (PASAT) and RNFL as well as and the Symbol Digit Modalities Test (SDMT) and RNFL predicted CS. To further control for a potential influence of the anterior visual system we performed partial correlation analyses between visual function and cognitive function test results but controlling for RNFL. Even when controlling for RNFL, CS was associated with PASAT performance and SDMT performance. Conclusion: Our data show that: a) cognitive impairment and performance in visual function tests such as low contrast sensitivity testing are associated; b) the main cognitive domains correlating with visual test performance are information processing speed and, to a lesser degree, memory; This preliminary data needs to be substantiated in further studies investigating patients with a higher cognitive burden, healthy controls and in longitudinal settings

    Fingolimod after a first unilateral episode of acute optic neuritis (MOVING) - preliminary results from a randomized, rater-blind, active-controlled, phase 2 trial

    Get PDF
    BACKGROUND: Neuroprotection and promotion of remyelination represent important therapeutic gaps in multiple sclerosis (MS). Acute optic neuritis (ON) is a frequent MS manifestation. Based on the presence and properties of sphingosine-1-phosphate receptors (S1PR) on astrocytes and oligodendrocytes, we hypothesized that remyelination can be enhanced by treatment with fingolimod, a S1PR modulator currently licensed for relapsing-remitting MS. METHODS: MOVING was an investigator-driven, rater-blind, randomized clinical trial. Patients with acute unilateral ON, occurring as a clinically isolated syndrome or MS relapse, were randomized to 6 months of treatment with 0.5 mg oral fingolimod or subcutaneous IFN-β 1b 250 μg every other day. The change in multifocal visual evoked potential (mfVEP) latency of the qualifying eye was examined as the primary (month 6 vs. baseline) and secondary (months 3, 6 and 12 vs. baseline) outcome. In addition, full field visual evoked potentials, visual acuity, optical coherence tomography as well as clinical relapses and measures of disability, cerebral MRI, and self-reported visual quality of life were obtained for follow-up. The study was halted due to insufficient recruitment (n = 15), and available results are reported. RESULTS: Per protocol analysis of the primary endpoint revealed a significantly larger reduction of mfVEP latency at 6 months compared to baseline with fingolimod treatment (n = 5; median decrease, 15.7 ms) than with IFN-β 1b treatment (n = 4; median increase, 8.15 ms) (p <  0.001 for interaction). Statistical significance was maintained in the secondary endpoint analysis. Descriptive results are reported for other endpoints. CONCLUSION: Preliminary results of the MOVING trial argue in support of a beneficial effect of fingolimod on optic nerve remyelination when compared to IFN-β treatment. Interpretation is limited by the small number of complete observations, an unexpected deterioration of the control group and a difference in baseline mfVEP latencies. The findings need to be confirmed in larger studies. TRIAL REGISTRATION: The trial was registered as EUDRA-CT 2011-004787-30 on October 26, 2012 and as NCT01647880 on July 24, 2012

    Microstructural visual system changes in AQP4-antibody-seropositive NMOSD

    Get PDF
    OBJECTIVE: To trace microstructural changes in patients with aquaporin-4 antibody (AQP4-ab)-seropositive neuromyelitis optica spectrum disorders (NMOSDs) by investigating the afferent visual system in patients without clinically overt visual symptoms or visual pathway lesions. METHODS: Of 51 screened patients with NMOSD from a longitudinal observational cohort study, we compared 6 AQP4-ab-seropositive NMOSD patients with longitudinally extensive transverse myelitis (LETM) but no history of optic neuritis (ON) or other bout (NMOSD-LETM) to 19 AQP4-ab-seropositive NMOSD patients with previous ON (NMOSD-ON) and 26 healthy controls (HCs). Foveal thickness (FT), peripapillary retinal nerve fiber layer (pRNFL) thickness, and ganglion cell and inner plexiform layer (GCIPL) thickness were measured with optical coherence tomography (OCT). Microstructural changes in the optic radiation (OR) were investigated using diffusion tensor imaging (DTI). Visual function was determined by high-contrast visual acuity (VA). OCT results were confirmed in a second independent cohort. RESULTS: FT was reduced in both patients with NMOSD-LETM (p = 3.52e(-14)) and NMOSD-ON (p = 1.24e(-16)) in comparison with HC. Probabilistic tractography showed fractional anisotropy reduction in the OR in patients with NMOSD-LETM (p = 0.046) and NMOSD-ON (p = 1.50e(-5)) compared with HC. Only patients with NMOSD-ON but not NMOSD-LETM showed neuroaxonal damage in the form of pRNFL and GCIPL thinning. VA was normal in patients with NMOSD-LETM and was not associated with OCT or DTI parameters. CONCLUSIONS: Patients with AQP4-ab-seropositive NMOSD without a history of ON have microstructural changes in the afferent visual system. The localization of retinal changes around the Mueller-cell rich fovea supports a retinal astrocytopathy

    Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation

    Get PDF
    Machine learning-based imaging diagnostics has recently reached or even surpassed the level of clinical experts in several clinical domains. However, classification decisions of a trained machine learning system are typically non-transparent, a major hindrance for clinical integration, error tracking or knowledge discovery. In this study, we present a transparent deep learning framework relying on 3D convolutional neural networks (CNNs) and layer-wise relevance propagation (LRP) for diagnosing multiple sclerosis (MS), the most widespread autoimmune neuroinflammatory disease. MS is commonly diagnosed utilizing a combination of clinical presentation and conventional magnetic resonance imaging (MRI), specifically the occurrence and presentation of white matter lesions in T2-weighted images. We hypothesized that using LRP in a naive predictive model would enable us to uncover relevant image features that a trained CNN uses for decision-making. Since imaging markers in MS are well-established this would enable us to validate the respective CNN model. First, we pre-trained a CNN on MRI data from the Alzheimer's Disease Neuroimaging Initiative (n = 921), afterwards specializing the CNN to discriminate between MS patients (n = 76) and healthy controls (n = 71). Using LRP, we then produced a heatmap for each subject in the holdout set depicting the voxel-wise relevance for a particular classification decision. The resulting CNN model resulted in a balanced accuracy of 87.04% and an area under the curve of 96.08% in a receiver operating characteristic curve. The subsequent LRP visualization revealed that the CNN model focuses indeed on individual lesions, but also incorporates additional information such as lesion location, non-lesional white matter or gray matter areas such as the thalamus, which are established conventional and advanced MRI markers in MS. We conclude that LRP and the proposed framework have the capability to make diagnostic decisions of CNN models transparent, which could serve to justify classification decisions for clinical review, verify diagnosis-relevant features and potentially gather new disease knowledge
    • …
    corecore