2,211 research outputs found

    The demise of a model? The state of collective bargaining and worker representation in Germany.

    Get PDF
    This article investigates collective bargaining trends in the German private sector since 2000. Using data from the IAB Establishment Panel and the German Establishment History Panel, it provides both cross-sectional and longitudinal evidence on these developments. It confirms that the hemorrhaging of sectoral bargaining, first observed in the 1980s and 1990s, is ongoing. Furthermore, works councils are also in decline, so that the dual system also displays erosion. For their part, any increases in collective bargaining at firm level have been minimal in recent years, while the behavior of newly-founded and closing establishments does not seem to lie at the root of a burgeoning collective bargaining free sector. Although there are few obvious signs of an organic reversal of the process, some revitalization of the bargaining system from above is implied by the labor policies of the new coalition government

    Stationary Cycling Induced by Switched Functional Electrical Stimulation Control

    Full text link
    Functional electrical stimulation (FES) is used to activate the dysfunctional lower limb muscles of individuals with neuromuscular disorders to produce cycling as a means of exercise and rehabilitation. However, FES-cycling is still metabolically inefficient and yields low power output at the cycle crank compared to able-bodied cycling. Previous literature suggests that these problems are symptomatic of poor muscle control and non-physiological muscle fiber recruitment. The latter is a known problem with FES in general, and the former motivates investigation of better control methods for FES-cycling.In this paper, a stimulation pattern for quadriceps femoris-only FES-cycling is derived based on the effectiveness of knee joint torque in producing forward pedaling. In addition, a switched sliding-mode controller is designed for the uncertain, nonlinear cycle-rider system with autonomous state-dependent switching. The switched controller yields ultimately bounded tracking of a desired trajectory in the presence of an unknown, time-varying, bounded disturbance, provided a reverse dwell-time condition is satisfied by appropriate choice of the control gains and a sufficient desired cadence. Stability is derived through Lyapunov methods for switched systems, and experimental results demonstrate the performance of the switched control system under typical cycling conditions.Comment: 8 pages, 3 figures, submitted to ACC 201

    Enhanced quantum tunnelling induced by disorder

    Full text link
    We reconsider the problem of the enhancement of tunnelling of a quantum particle induced by disorder of a one-dimensional tunnel barrier of length LL, using two different approximate analytic solutions of the invariant imbedding equations of wave propagation for weak disorder. The two solutions are complementary for the detailed understanding of important aspects of numerical results on disorder-enhanced tunnelling obtained recently by Kim et al. (Phys. rev. B{\bf 77}, 024203 (2008)). In particular, we derive analytically the scaled wavenumber (kL)(kL)-threshold where disorder-enhanced tunnelling of an incident electron first occurs, as well as the rate of variation of the transmittance in the limit of vanishing disorder. Both quantities are in good agreement with the numerical results of Kim et al. Our non-perturbative solution of the invariant imbedding equations allows us to show that the disorder enhances both the mean conductance and the mean resistance of the barrier.Comment: 10 page

    Stabilizing unstable periodic orbits in the Lorenz equations using time-delayed feedback control

    Full text link
    For many years it was believed that an unstable periodic orbit with an odd number of real Floquet multipliers greater than unity cannot be stabilized by the time-delayed feedback control mechanism of Pyragus. A recent paper by Fiedler et al uses the normal form of a subcritical Hopf bifurcation to give a counterexample to this theorem. Using the Lorenz equations as an example, we demonstrate that the stabilization mechanism identified by Fiedler et al for the Hopf normal form can also apply to unstable periodic orbits created by subcritical Hopf bifurcations in higher-dimensional dynamical systems. Our analysis focuses on a particular codimension-two bifurcation that captures the stabilization mechanism in the Hopf normal form example, and we show that the same codimension-two bifurcation is present in the Lorenz equations with appropriately chosen Pyragus-type time-delayed feedback. This example suggests a possible strategy for choosing the feedback gain matrix in Pyragus control of unstable periodic orbits that arise from a subcritical Hopf bifurcation of a stable equilibrium. In particular, our choice of feedback gain matrix is informed by the Fiedler et al example, and it works over a broad range of parameters, despite the fact that a center-manifold reduction of the higher-dimensional problem does not lead to their model problem.Comment: 21 pages, 8 figures, to appear in PR

    A linear theory for control of non-linear stochastic systems

    Get PDF
    We address the role of noise and the issue of efficient computation in stochastic optimal control problems. We consider a class of non-linear control problems that can be formulated as a path integral and where the noise plays the role of temperature. The path integral displays symmetry breaking and there exist a critical noise value that separates regimes where optimal control yields qualitatively different solutions. The path integral can be computed efficiently by Monte Carlo integration or by Laplace approximation, and can therefore be used to solve high dimensional stochastic control problems.Comment: 5 pages, 3 figures. Accepted to PR

    Algorithms for response adaptive sampling designs

    Full text link
    An experimental design is a formula or algorithm that specifies how resources are to be utilized throughout a study. The design is considered to be good or even optimal if it allows for sufficiently precise and accurate data analysis with the least output of resources such as time, money and experimental units. Most experimental designs use fixed sampling procedures in which the sample sizes and order of allocations to different study groups are known in advance. Copyright © 2009 John Wiley & Sons, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/64301/1/25_ftp.pd

    Practical Open-Loop Optimistic Planning

    Get PDF
    We consider the problem of online planning in a Markov Decision Process when given only access to a generative model, restricted to open-loop policies - i.e. sequences of actions - and under budget constraint. In this setting, the Open-Loop Optimistic Planning (OLOP) algorithm enjoys good theoretical guarantees but is overly conservative in practice, as we show in numerical experiments. We propose a modified version of the algorithm with tighter upper-confidence bounds, KLOLOP, that leads to better practical performances while retaining the sample complexity bound. Finally, we propose an efficient implementation that significantly improves the time complexity of both algorithms

    Two-parameter deformations of logarithm, exponential, and entropy: A consistent framework for generalized statistical mechanics

    Full text link
    A consistent generalization of statistical mechanics is obtained by applying the maximum entropy principle to a trace-form entropy and by requiring that physically motivated mathematical properties are preserved. The emerging differential-functional equation yields a two-parameter class of generalized logarithms, from which entropies and power-law distributions follow: these distributions could be relevant in many anomalous systems. Within the specified range of parameters, these entropies possess positivity, continuity, symmetry, expansibility, decisivity, maximality, concavity, and are Lesche stable. The Boltzmann-Shannon entropy and some one parameter generalized entropies already known belong to this class. These entropies and their distribution functions are compared, and the corresponding deformed algebras are discussed.Comment: Version to appear in PRE: about 20% shorter, references updated, 13 PRE pages, 3 figure
    • …
    corecore