6,916 research outputs found

    Ground-based CCD astrometry with wide field imagers. IV. An improved Geometric Distortion Correction for the Blue prime-focus Camera at the LBT

    Full text link
    High precision astrometry requires an accurate geometric distortion solution. In this work, we present an average correction for the Blue Camera of the Large Binocular Telescope which enables a relative astrometric precision of ~15 mas for the B_Bessel and V_Bessel broad-band filters. The result of this effort is used in two companion papers: the first to measure the absolute proper motion of the open cluster M67 with respect to the background galaxies; the second to decontaminate the color-magnitude diagram of M67 from field objects, enabling the study of the end of its white dwarf cooling sequence. Many other applications might find this distortion correction useful.Comment: 13 pages, 11 figures, 4 tables. accepted for publication on Astronomy and Astrophysic

    Astrometry and photometry with HST-WFC3. I. Geometric distortion corrections of F225W, F275W, F336W bands of the UVIS-channel

    Full text link
    An accurate geometric distortion solution for the Hubble Space Telescope UVIS-channel of Wide Field Camera 3 is the first step towards its use for high precision astrometry. In this work we present an average correction that enables a relative astrometric accuracy of ~1 mas (in each axis for well exposed stars) in three broad-band ultraviolet filters (F225W, F275W, and F336W). More data and a better understanding of the instrument are required to constrain the solution to a higher level of accuracy.Comment: 20 pages, 7 figures (3 in low resolution), 3 tables. Accepted for publication in PASP on October 16 200

    Geometric back-reaction in pre-inflation from relativistic quantum geometry

    Get PDF
    The pre-inflationary evolution of the universe describes the beginning of the expansion from a static initial state, such that the Hubble parameter is initially zero, but increases to an asymptotic constant value, in which it could achieve a de Sitter (inflationary) expansion. The expansion is driven by a background phantom field. The back-reaction effects at this moment should describe vacuum geometrical excitations, which are studied with detail in this work using Relativistic Quantum Geometry.Comment: improved versio

    Thermodynamical properties of metric fluctuations during inflation

    Full text link
    I study a thermodynamical approach to scalar metric perturbations during the inflationary stage. In the power-law expanding universe here studied, I find a negative heat capacity as a manifestation of superexponential growing for the number of states in super Hubble scales. The power spectrum depends on the Gibbons-Hawking and Hagedorn temperatures.Comment: 7 pages, no figures (accepted to publication in General Relativity and Gravitation

    Charged and electromagnetic fields from relativistic quantum geometry

    Get PDF
    In the Relativistic Quantum Geometry (RQG) formalism recently introduced, was explored the possibility that the variation of the tensor metric can be done in a Weylian integrable manifold using a geometric displacement, from a Riemannian to a Weylian integrable manifold, described by the dynamics of an auxiliary geometrical scalar field θ\theta, in order that the Einstein tensor (and the Einstein equations) can be represented on a Weyl-like manifold. In this framework we study jointly the dynamics of electromagnetic fields produced by quantum complex vector fields, which describes charges without charges. We demonstrate that complex fields act as a source of tetra-vector fields which describe an extended Maxwell dynamics.Comment: improved versio

    Ground-based astrometry with wide field imagers. V. Application to near-infrared detectors: HAWK-I@VLT/ESO

    Full text link
    High-precision astrometry requires accurate point-spread function modeling and accurate geometric-distortion corrections. This paper demonstrates that it is possible to achieve both requirements with data collected at the high acuity wide-field K-band imager (HAWK-I), a wide-field imager installed at the Nasmyth focus of UT4/VLT ESO 8m telescope. Our final astrometric precision reaches ~3 mas per coordinate for a well-exposed star in a single image with a systematic error less than 0.1 mas. We constructed calibrated astro-photometric catalogs and atlases of seven fields: the Baade's Window, NGC 6656, NGC 6121, NGC 6822, NGC 6388, NGC 104, and the James Webb Space Telescope calibration field in the Large Magellanic Cloud. We make these catalogs and images electronically available to the community. Furthermore, as a demonstration of the efficacy of our approach, we combined archival material taken with the optical wide-field imager at the MPI/ESO 2.2m with HAWK-I observations. We showed that we are able to achieve an excellent separation between cluster members and field objects for NGC 6656 and NGC 6121 with a time base-line of about 8 years. Using both HST and HAWK-I data, we also study the radial distribution of the SGB populations in NGC 6656 and conclude that the radial trend is flat within our uncertainty. We also provide membership probabilities for most of the stars in NGC 6656 and NGC 6121 catalogs and estimate membership for the published variable stars in these two fields.Comment: 36 pages (included appendix), 13 tables, 35 figures (26 in low resolution), accepted for publication in Astronomy and Astrophysics. Online materials will be soon available on CDS. Meanwhile, online materials can be requested directly to the first autho

    Optimized Multimode Interference Fiber Based Refractometer in A Reflective Interrogation Scheme

    Get PDF
    A fiber based refractometer in a reflective interrogation scheme is investigated and optimized. A thin gold film was deposited on the tip of a coreless fiber section, which is spliced with a single mode fiber. The coreless fiber is a multimode waveguide, and the observed effects are due to multimode interference. To investigate and optimize the structure, the multimode part of the sensor is built with 3 different lengths: 58 mm, 29 mm and 17 mm. We use a broadband light source ranging from 1475 nm to 1650 nm and we test the sensors with liquids of varying refractive indices, from 1.333 to 1.438. Our results show that for a fixed wavelength, the sensor sensitivity is independent of the multimode fiber length, but we observed a sensitivity increase of approximately 0.7 nm/RIU for a one-nanometer increase in wavelength
    • …
    corecore