41 research outputs found

    Identifying plant cell wall remnants in detritus of a subtropical wetland with fluorescence labeling

    Get PDF
    Sediment accretion in wetlands represents a significant carbon burial pathway. While litter studies can quantify the loss rates of plant leaf material, those studies do not provide insight into the specific cell wall polymers being retained or lost within the detrital matrix. The Everglades ecosystem has been dramatically altered due to anthropogenic eutrophication and hydrologic modifications. The results are changes in macrophyte species composition and sediment accretion- and loss- rates. To improve ecological conditions, active management strategies are re-establishing open water slough environments. A question remains about the persistence of new- and old- plant cell wall material in sediments because of active management. In this pilot project we utilized immuno-fluorescence labeling with lectins applied to plant leaf material and detrital flocculent collected from created open and control plots in the Everglades to observe the presence, absence, and overlap of specific cell wall polymers between macrophytes and detrital flocculent in increasingly recalcitrant materials that would most likely contribute to peat accumulation. The persistence and loss of specific polymers between treatment and control plots provided insight into the differing levels of recalcitrance amongst plant cell walls and their relative potential as a carbon sink. This study provides a novel method for testing for the presence and persistence of specific cell wall polymers in detritus to gain a better understanding of plant material persistence in wetland ecosystems

    Associations between Prenatal Exposure to Black Carbon and Memory Domains in Urban Children: Modification by Sex and Prenatal Stress

    Get PDF
    Background Whether fetal neurodevelopment is disrupted by traffic-related air pollution is uncertain. Animal studies suggest that chemical and non-chemical stressors interact to impact neurodevelopment, and that this association is further modified by sex. Objectives To examine associations between prenatal traffic-related black carbon exposure, prenatal stress, and sex with children’s memory and learning. Methods Analyses included N = 258 mother-child dyads enrolled in a Boston, Massachusetts pregnancy cohort. Black carbon exposure was estimated using a validated spatiotemporal land-use regression model. Prenatal stress was measured using the Crisis in Family Systems-Revised survey of negative life events. The Wide Range Assessment of Memory and Learning (WRAML2) was administered at age 6 years; outcomes included the General Memory Index and its component indices [Verbal, Visual, and Attention Concentration]. Relationships between black carbon and WRAML2 index scores were examined using multivariable-adjusted linear regression including effect modification by stress and sex. Results Mothers were primarily minorities (60% Hispanic, 26% Black); 67% had ≤12 years of education. The main effect for black carbon was not significant for any WRAML2 index; however, in stratified analyses, among boys with high exposure to prenatal stress, Attention Concentration Index scores were on average 9.5 points lower for those with high compared to low prenatal black carbon exposure (P3-way interaction = 0.04). Conclusion The associations between prenatal exposure to black carbon and stress with children’s memory scores were stronger in boys than in girls. Studies assessing complex interactions may more fully characterize health risks and, in particular, identify vulnerable subgroups

    Dynamics of extracellular polymeric substance (EPS) production and loss in an estuarine, diatom-dominated, microalgal biofilm over a tidal emersion-immersion period.

    Get PDF
    We studied patterns of production and loss of four different extracellular polymeric substance (EPS) fractions - colloidal carbohydrates, colloidal EPS (cEPS), hot water (HW)-extracted and hot bicarbonate (HB)-extracted fractions - and community profiles of active (RNA) bacterial communities by use of Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis of reverse transcription-polymerase chain reaction amplified 16S rRNA in mudflats in the Colne Estuary, United Kingdom, over two tidal emersion-immersion cycles. Colloidal carbohydrates and intracellular storage carbohydrate (HW) increased during tidal emersion and declined during tidal cover. The dynamics of cEPS and uronic acid content were closely coupled, as were the HB fraction and HB uronic acids. Changes in monosaccharide profiles of HW and HB fractions occurred during the diel period, with some similarity between cEPS and HB fractions. Increasing enzymatic release rates of reducing sugars and increased reducing sugar content were correlated with increased concentrations of colloidal carbohydrate and cEPS during the illuminated emersion period, and with the amount of HB-extracted uronic acids (the most refractory EPS fraction measured). Loss of reducing sugars was high, with sediment concentrations far below those predicted by the measured in situ release rates, T-RFLP analysis revealed no significant shifts in the overall taxonomic composition of the active bacterial community. However, 12 of the 59 terminal restriction fragments identified showed significant changes in relative abundance during the tidal cycle. Changes in the relative abundance of three particular terminal restriction fragments (bacterial taxa) were positively correlated to the rate of extracellular hydrolysis. Losses of chlorophyll a and colloidal and cEPS (up to 50-60) occurred mainly in the first 30 min after tidal cover. About half of this may be owing to in situ degradation, with "wash away" into the water column accounting for the remainder. © 2006, by the American Society of Limnology and Oceanography, Inc

    In Situ Photodegradation of Incorporated Polyanion Does Not Alter Prion Infectivity

    Get PDF
    Single-stranded polyanions ≥40 bases in length facilitate the formation of hamster scrapie prions in vitro, and polyanions co-localize with PrPSc aggregates in vivo [1], [2]. To test the hypothesis that intact polyanionic molecules might serve as a structural backbone essential for maintaining the infectious conformation(s) of PrPSc, we produced synthetic prions using a photocleavable, 100-base oligonucleotide (PC-oligo). In serial Protein Misfolding Cyclic Amplification (sPMCA) reactions using purified PrPC substrate, PC-oligo was incorporated into physical complexes with PrPSc molecules that were resistant to benzonase digestion. Exposure of these nuclease-resistant prion complexes to long wave ultraviolet light (315 nm) induced degradation of PC-oligo into 5 base fragments. Light-induced photolysis of incorporated PC-oligo did not alter the infectivity of in vitro-generated prions, as determined by bioassay in hamsters and brain homogenate sPMCA assays. Neuropathological analysis also revealed no significant differences in the neurotropism of prions containing intact versus degraded PC-oligo. These results show that polyanions >5 bases in length are not required for maintaining the infectious properties of in vitro-generated scrapie prions, and indicate that such properties are maintained either by short polyanion remnants, other co-purified cofactors, or by PrPSc molecules alone

    Izloženost štakora niskim razinama olova tijekom fetalnog i ranoga postnatalnog razvoja šteti učenju pasivnim izbjegavanjem kazne kasnije u odrasloj dobi

    Get PDF
    This follow-up study investigated the effects of low-level lead exposure during prenatal and early postnatal period on learning and memory in rats immediately after exposure has ceased at weaning and later in their adulthood. Male Wistar-derived rats were exposed to lead (as 0.2 % lead acetate solution) through their mothers during pregnancy and lactation until they were weaned. Mothers of control rats were given tap water during pregnancy and lactation. All pups were weaned on tap water at 21 days of age and were followed up until 120 days old. Low-level lead exposure did not affect their body weight at any time during the experiment. Blood lead in the exposed rats was significantly higher on postnatal day 22 and dropped to control values by day 120. Passive avoidance test showed impaired memory retention in the exposed rats on postnatal days 25 and 120. This suggests that exposure to low-lead levels during foetal and early postnatal development of brain tissue can cause memory impairment that lasts into adulthood.Cilj je ovoga prospektivnog istraživanja bio utvrditi kako izloženost niskim razinama olova tijekom gestacije i ranoga postnatalnog razvoja utječe na učenje i pamćenje u štakora odmah nakon prestanka izloženosti (odbijanjem od sise) te kasnije u odrasloj dobi. Mužjaci štakora izloženi su olovu u obliku 0,2 %-tne otopine olovova acetata preko majke tijekom gestacije te za cijeloga trajanja laktacije sve do odbijanja od sise. Sve to vrijeme majke kontrolnih štakora dobivale su vodu iz pipe. Svi su štakorčići odbijeni od sise 21 dan nakon okota i otada piju vodu iz pipe. Praćeni su do 120. dana života. Izloženost niskim razinama olova nije dovela do razlika u tjelesnoj težini između izloženih i kontrolnih štakorčića. Razine olova u krvi bile su značajno više u izloženih štakora 22 dana od okota, da bi do 120. dana pale na razinu u kontrolnih štakora. Test pasivnoga izbjegavanja pokazao je oštećenje pamćenja u izloženih štakora 25. i 120. dana nakon okota. To potvrđuje da izloženost niskim razinama olova tijekom fetalnoga i ranoga postnatalnog razvoja moždanog tkiva može dovesti to oštećenja u pamćenju koje traje sve do odrasle dobi

    Global Patterns and Controls of Nutrient Immobilization On Decomposing Cellulose In Riverine Ecosystems

    Get PDF
    Microbes play a critical role in plant litter decomposition and influence the fate of carbon in rivers and riparian zones. When decomposing low-nutrient plant litter, microbes acquire nitrogen (N) and phosphorus (P) from the environment (i.e., nutrient immobilization), and this process is potentially sensitive to nutrient loading and changing climate. Nonetheless, environmental controls on immobilization are poorly understood because rates are also influenced by plant litter chemistry, which is coupled to the same environmental factors. Here we used a standardized, low-nutrient organic matter substrate (cotton strips) to quantify nutrient immobilization at 100 paired stream and riparian sites representing 11 biomes worldwide. Immobilization rates varied by three orders of magnitude, were greater in rivers than riparian zones, and were strongly correlated to decomposition rates. In rivers, P immobilization rates were controlled by surface water phosphate concentrations, but N immobilization rates were not related to inorganic N. The N:P of immobilized nutrients was tightly constrained to a molar ratio of 10:1 despite wide variation in surface water N:P. Immobilization rates were temperature-dependent in riparian zones but not related to temperature in rivers. However, in rivers nutrient supply ultimately controlled whether microbes could achieve the maximum expected decomposition rate at a given temperature
    corecore