46 research outputs found

    Subtelomeric FISH analysis in 76 patients with syndromic developmental delay/intellectual disability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intellectual disability affects approximately 1 to 3% of the general population. The etiology is still poorly understood and it is estimated that one-half of the cases are due to genetic factors. Cryptic subtelomeric aberrations have been found in roughly 5 to 7% of all cases.</p> <p>Methods</p> <p>We performed a subtelomeric FISH analysis on 76 unrelated children with normal standard karyotype ascertained by developmental delay or intellectual disability, associated with congenital malformations, and/or facial dysmorphisms.</p> <p>Results</p> <p>Ten cryptic chromosomal anomalies have been identified in the whole cohort (13,16%), 8 in the group of patients characterized by developmental delay or intellectual disability associated with congenital malformations and facial dysmorphisms, 2 in patients with developmental delay or intellectual disability and facial dysmorphisms only.</p> <p>Conclusion</p> <p>We demonstrate that a careful clinical examination is a very useful tool for pre-selection of patients for genomic analysis, clearly enhancing the chromosomal anomaly detection rate. Clinical features of most of these patients are consistent with the corresponding emerging chromosome phenotypes, pointing out these new clinical syndromes associated with specific genomic imbalances.</p

    Large cryptic genomic rearrangements with apparently normal karyotypes detected by array-CGH.

    Get PDF
    Background: Conventional karyotyping (550 bands resolution) is able to identify chromosomal aberrations >5-10 Mb, which represent a known cause of intellectual disability/developmental delay (ID/DD) and/or multiple congenital anomalies (MCA). Array-Comparative Genomic Hybridization (array-CGH) has increased the diagnostic yield of 15-20%. Results: In a cohort of 700 ID/DD cases with or without MCA, including 15 prenatal diagnoses, we identified a subgroup of seven patients with a normal karyotype and a large complex rearrangement detected by array-CGH (at least 6, and up to 18 Mb). FISH analysis could be performed on six cases and showed that rearrangements were translocation derivatives, indistinguishable from a normal karyotype as they involved a similar band pattern and size. Five were inherited from a parent with a balanced translocation, whereas two were apparently de novo. Genes spanning the rearrangements could be associated with some phenotypic features in three cases (case 3: DOCK8; case 4: GATA3, AKR1C4; case 6: AS/PWS deletion, CHRNA7), and in two, likely disease genes were present (case 5: NR2F2, TP63, IGF1R; case 7: CDON). Three of our cases were prenatal diagnoses with an apparently normal karyotype. Conclusions: Large complex rearrangements of up to 18 Mb, involving chromosomal regions with similar size and band appearance may be overlooked by conventional karyotyping. Array-CGH allows a precise chromosomal diagnosis and recurrence risk definition, further confirming this analysis as a first tier approach to clarify molecular bases of ID/DD and/or MCA. In prenatal tests, array-CGH is confirmed as an important tool to avoid false negative results due to karyotype intrinsic limit of detection

    Familial occurrence of ptosis, nasal speech, prominent ears, hand anomalies and learning problems

    No full text
    We describe a four-generation family in whom 5 members show the combination of a large head, ptosis, nasal speech that sometimes goes along with a cleft palate, full cheeks, small mouth, and prominent ears, and who also have learning problems. We evaluated three affected members in detail and found them to have in addition a partial cutaneous syndactyly between the third and fourth fingers, an increased distance between second and third finger, and a decreased smell. We have not been unable to find other patients described in literature with the same combination of features, and suggest this to represent a hitherto unrecognizable entity. Pattern of inheritance is likely to be autosomal dominant. (C) 2010 Elsevier Masson SAS. All rights reserve
    corecore