113 research outputs found

    Structure and stability of chiral beta-tapes: a computational coarse-grained approach

    Full text link
    We present two coarse-grained models of different levels of detail for the description of beta-sheet tapes obtained from equilibrium self-assembly of short rationally designed oligopeptides in solution. Here we only consider the case of the homopolymer oligopeptides with the identical sidegroups attached, in which the tapes have a helicoid surface with two equivalent sides. The influence of the chirality parameter on the geometrical characteristics, namely the diameter, inter-strand distance and pitch, of the tapes have been investigated. The two models are found to produceequivalent results suggesting a considerable degree of universality in conformations of the tapes.Comment: 24 pages, 5 PS figures. Accepted to J. Chem. Phy

    Random Errors in Superconducting Dipoles

    Get PDF
    The magnetic field in a superconducting magnet is mainly determined by the position of the conductors. Hence, the main contribution to the random field errors comes from random displacement of the coil with respect to its nominal position. Using a Monte-Carlo method, we analyze the measured random field errors of the main dipoles of the LHC, Tevatron, RHIC and HERA projects in order to estimate the precision of the conductor positioning reached during the production. The method can be used to obtain more refined estimates of the random components for future projects

    Field Quality in Low-Beta Superconducting Quadrupoles and Impact on the Beam Dynamics for the Large Hadron Collider Upgrade

    Get PDF
    A possible scenario for the luminosity upgrade of the Large Hadron Collider is based on large aperture quadrupoles to lower b* in the interaction regions. Here we analyze the measurements relative to the field quality of the RHIC and LHC superconducting quadrupoles to find out the dependence of field errors on the size of the magnet aperture. Data are interpreted in the framework of a MonteCarlo analysis giving the reproducibility in the coil positioning reached in each production. We show that this precision is likely to be independent of the magnet aperture. Using this result, we can carry out an estimate of the impact of the field quality on the beam dynamics for the collision optics

    Dependence of Magnetic Field Quality on Collar Supplier and Dimensions in the Main LHC Dipole

    Get PDF
    C. Santoni, coll. Atlas, to be published in the proceeding of the conferenceIn order to keep the electro-magnetic forces and to minimize conductor movements, the superconducting coils of the main Large Hadron Collider dipoles are held in place by means of austenitic steel collars. Two suppliers provide the collars necessary for the whole LHC production, which has now reached more than 800 collared coils. In this paper we first assess if the different collar suppliers origin a noticeable difference in the magnetic field quality measured at room temperature. We then analyze the measurements of the collar dimensions carried out at the manufacturers, comparing them to the geometrical tolerances. Finally we use a magneto-static model to evaluate the expected spread in the field components induced by the actual collar dimensions. These spreads are compared to the magnetic measurements at room temperature over the magnet production in order to identify if the collars, rather than other components or assembly process, can account for the measured magnetic field effects. It has been found that in one over the three Cold Mass Assemblers the driving mechanism of the magnetic field harmonics b2 and a3 is the collar shape

    Trends in Field Quality along the Production of the LHC Dipoles and Differences among Manufacturers

    Get PDF
    More than two thirds of the dipoles of the Large Hadron Collider have been manufactured and their magnetic field has been measured at room temperature. In this paper we make a review of the trends that have been observed during the production. In some cases, the trends were traced back to displacements of conductors with respect to the nominal lay-out. The analysis allows detecting the most critical zones in the superconducting coil as far as field quality is concerned. The second part of the paper makes the point of the observed differences in field quality between the three manufacturers. The analysis allows evaluating which multipoles are more affected, what magnitudes of displacements are necessary to explain these differences (the manufacturers all producing the same baseline), and what could be the origin of such differences

    Short Circuit Localization in the LHC Main Dipole Coils by means of Room Temperature Magnetic Measurements

    Get PDF
    During the construction of the LHC main dipoles, 12 cases of short circuits between the cables of the superconducting coils have been detected. Some of them appeared only under the press, making impossible their localization after disassembly. In this paper we describe a method to locate electrical shorts through the use of room temperature magnetic measurements. An example case is discussed in detail to illustrate the features of the approach, and a statistic of the cases met during the production of more that 70% of the dipole total quantity is presented

    Methods to detect faulty splices in the superconducting magnet system of the LHC

    Get PDF
    The incident of 19 September 2008 at the LHC was caused by a faulty inter-magnet splice of about 200 nΩ resistance. Cryogenic and electrical techniques have been developed to detect other abnormal splices, either between or inside the magnets. The existing quench protection system can be used to detect internal splices with R>20 nΩ. Since this system does not cover the bus between magnets, the cryogenic system is used to measure the rate of temperature rise due to ohmic heating. Accuracy of a few mK/h, corresponding to a few Watts, has been achieved, allowing detection of excess resistance, if it is more than 40 nΩ in a cryogenic subsector (two optical cells). Follow-up electrical measurements are made in regions identified by the cryogenic system. These techniques have detected two abnormal internal magnet splices of 100 nΩ and 50 nΩ respectively. In 2009, this ad hoc system will be replaced with a permanent one to monitor all splices at the nΩ level

    Role of water in Protein Aggregation and Amyloid Polymorphism

    Full text link
    A variety of neurodegenerative diseases are associated with the formation of amyloid plaques. Our incomplete understanding of this process underscores the need to decipher the principles governing protein aggregation. Most experimental and simulation studies have been interpreted largely from the perspective of proteins: the role of solvent has been relatively overlooked. In this Account, we provide a perspective on how interactions with water affect folding landscapes of Aβ\beta monomers, Aβ1622\beta_{16-22} oligomer formation, and protofilament formation in a Sup35 peptide. Simulations show that the formation of aggregation-prone structures (N^*) similar to the structure in the fibril requires overcoming high desolvation barrier. The mechanism of protofilament formation in a polar Sup35 peptide fragment illustrates that water dramatically slows down self-assembly. Release of water trapped in the pores as water wires creates protofilament with a dry interface. Similarly, one of the main driving force for addition of a solvated monomer to a preformed fibril is the entropy gain of released water. We conclude by postulating that two-step model for protein crystallization must also hold for higher order amyloid structure formation starting from N^*. Multiple N^* structures with varying water content results in a number of distinct water-laden polymorphic structures. In predominantly hydrophobic sequences, water accelerates fibril formation. In contrast, water-stabilized metastable intermediates dramatically slow down fibril growth rates in hydrophilic sequences.Comment: 27 pages, 4 figures; Accounts of Chemical Research, 201
    corecore