218 research outputs found

    P-Element Homing Is Facilitated by engrailed Polycomb-Group Response Elements in Drosophila melanogaster

    Get PDF
    P-element vectors are commonly used to make transgenic Drosophila and generally insert in the genome in a nonselective manner. However, when specific fragments of regulatory DNA from a few Drosophila genes are incorporated into P-transposons, they cause the vectors to be inserted near the gene from which the DNA fragment was derived. This is called P-element homing. We mapped the minimal DNA fragment that could mediate homing to the engrailed/invected region of the genome. A 1.6 kb fragment of engrailed regulatory DNA that contains two Polycomb-group response elements (PREs) was sufficient for homing. We made flies that contain a 1.5kb deletion of engrailed DNA (enΔ1.5) in situ, including the PREs and the majority of the fragment that mediates homing. Remarkably, homing still occurs onto the enΔ1. 5 chromosome. In addition to homing to en, P[en] inserts near Polycomb group target genes at an increased frequency compared to P[EPgy2], a vector used to generate 18,214 insertions for the Drosophila gene disruption project. We suggest that homing is mediated by interactions between multiple proteins bound to the homing fragment and proteins bound to multiple areas of the engrailed/invected chromatin domain. Chromatin structure may also play a role in homing

    A Screen for Genes Expressed in the Olfactory Organs of Drosophila melanogaster Identifies Genes Involved in Olfactory Behaviour

    Get PDF
    BACKGROUND: For insects the sense of smell and associated olfactory-driven behaviours are essential for survival. Insects detect odorants with families of olfactory receptor proteins that are very different to those of mammals, and there are likely to be other unique genes and genetic pathways involved in the function and development of the insect olfactory system. METHODOLOGY/PRINCIPAL FINDINGS: We have performed a genetic screen of a set of 505 Drosophila melanogaster gene trap insertion lines to identify novel genes expressed in the adult olfactory organs. We identified 16 lines with expression in the olfactory organs, many of which exhibited expression of the trapped genes in olfactory receptor neurons. Phenotypic analysis showed that six of the lines have decreased olfactory responses in a behavioural assay, and for one of these we showed that precise excision of the P element reverts the phenotype to wild type, confirming a role for the trapped gene in olfaction. To confirm the identity of the genes trapped in the lines we performed molecular analysis of some of the insertion sites. While for many lines the reported insertion sites were correct, we also demonstrated that for a number of lines the reported location of the element was incorrect, and in three lines there were in fact two pGT element insertions. CONCLUSIONS/SIGNIFICANCE: We identified 16 new genes expressed in the Drosophila olfactory organs, the majority in neurons, and for several of the gene trap lines demonstrated a defect in olfactory-driven behaviour. Further characterisation of these genes and their roles in olfactory system function and development will increase our understanding of how the insect olfactory system has evolved to perform the same essential function to that of mammals, but using very different molecular genetic mechanisms

    Retrograde semaphorin-plexin signalling drives homeostatic synaptic plasticity.

    Get PDF
    Homeostatic signalling systems ensure stable but flexible neural activity and animal behaviour. Presynaptic homeostatic plasticity is a conserved form of neuronal homeostatic signalling that is observed in organisms ranging from Drosophila to human. Defining the underlying molecular mechanisms of neuronal homeostatic signalling will be essential in order to establish clear connections to the causes and progression of neurological disease. During neural development, semaphorin-plexin signalling instructs axon guidance and neuronal morphogenesis. However, semaphorins and plexins are also expressed in the adult brain. Here we show that semaphorin 2b (Sema2b) is a target-derived signal that acts upon presynaptic plexin B (PlexB) receptors to mediate the retrograde, homeostatic control of presynaptic neurotransmitter release at the neuromuscular junction in Drosophila. Further, we show that Sema2b-PlexB signalling regulates presynaptic homeostatic plasticity through the cytoplasmic protein Mical and the oxoreductase-dependent control of presynaptic actin. We propose that semaphorin-plexin signalling is an essential platform for the stabilization of synaptic transmission throughout the developing and mature nervous system. These findings may be relevant to the aetiology and treatment of diverse neurological and psychiatric diseases that are characterized by altered or inappropriate neural function and behaviour

    Reduced body weight is a common effect of gene knockout in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During a search for obesity candidate genes in a small region of the mouse genome, we noticed that many genes when knocked out influence body weight. To determine whether this was a general feature of gene knockout or a chance occurrence, we surveyed the Jackson Laboratory Mouse Genome Database for knockout mouse strains and their phenotypes. Body weights were not available for all strains so we also obtained body weight information by contacting a random sample of investigators responsible for a knockout strain.</p> <p>Results</p> <p>We classified each knockout mouse strain as (1) lighter and smaller, (2) larger and heavier, or (3) the same weight, relative to control mice. We excluded knockout strains that died early in life, even though this type of lethality is often associated with a small embryo or reduced body size. Based on a dataset of 1,977 knockout strains, we found that that 31% of viable knockout mouse strains weighed less and an additional 3% weighed more than did controls.</p> <p>Conclusion</p> <p>Body weight is potentially a latent variable in about a third of experiments that use knockout mice and should be considered in interpreting experimental outcomes, e.g., in studies of hypertension, drug and hormone metabolism, organ development, cell proliferation and apoptosis, digestion, heart rate, or atherosclerosis. If we assume that the knockout genes we surveyed are representative then upward of 6,000 genes are predicted to influence the size of a mouse. Body weight is highly heritable, and numerous quantitative trait loci have been mapped in mice, but "multigenic" is an insufficient term for the thousands of loci that could contribute to this complex trait.</p

    Genetic Labeling of Neuronal Subsets through Enhancer Trapping in Mice

    Get PDF
    The ability to label, visualize, and manipulate subsets of neurons is critical for elucidating the structure and function of individual cell types in the brain. Enhancer trapping has proved extremely useful for the genetic manipulation of selective cell types in Drosophila. We have developed an enhancer trap strategy in mammals by generating transgenic mice with lentiviral vectors carrying single-copy enhancer-detector probes encoding either the marker gene lacZ or Cre recombinase. This transgenic strategy allowed us to genetically identify a wide variety of neuronal subpopulations in distinct brain regions. Enhancer detection by lentiviral transgenesis could thus provide a complementary method for generating transgenic mouse libraries for the genetic labeling and manipulation of neuronal subsets

    Genome-Wide Association Analysis of Oxidative Stress Resistance in Drosophila melanogaster

    Get PDF
    Background: Aerobic organisms are susceptible to damage by reactive oxygen species. Oxidative stress resistance is a quantitative trait with population variation attributable to the interplay between genetic and environmental factors. Drosophila melanogaster provides an ideal system to study the genetics of variation for resistance to oxidative stress. Methods and Findings: We used 167 wild-derived inbred lines of the Drosophila Genetic Reference Panel for a genomewide association study of acute oxidative stress resistance to two oxidizing agents, paraquat and menadione sodium bisulfite. We found significant genetic variation for both stressors. Single nucleotide polymorphisms (SNPs) associated with variation in oxidative stress resistance were often sex-specific and agent-dependent, with a small subset common for both sexes or treatments. Associated SNPs had moderately large effects, with an inverse relationship between effect size and allele frequency. Linear models with up to 12 SNPs explained 67–79 % and 56–66 % of the phenotypic variance for resistance to paraquat and menadione sodium bisulfite, respectively. Many genes implicated were novel with no known role in oxidative stress resistance. Bioinformatics analyses revealed a cellular network comprising DNA metabolism and neuronal development, consistent with targets of oxidative stress-inducing agents. We confirmed associations of seven candidate genes associated with natural variation in oxidative stress resistance through mutational analysis. Conclusions: We identified novel candidate genes associated with variation in resistance to oxidative stress that hav

    Whacked and Rab35 polarize dynein-motor-complex-dependent seamless tube growth

    Get PDF
    Seamless tubes form intracellularly without cell–cell or autocellular junctions. Such tubes have been described across phyla, but remain mysterious despite their simple architecture. In Drosophila, seamless tubes are found within tracheal terminal cells, which have dozens of branched protrusions extending hundreds of micrometres. We find that mutations in multiple components of the dynein motor complex block seamless tube growth, raising the possibility that the lumenal membrane forms through minus-end-directed transport of apical membrane components along microtubules. Growth of seamless tubes is polarized along the proximodistal axis by Rab35 and its apical membrane-localized GAP, Whacked. Strikingly, loss of whacked (or constitutive activation of Rab35) leads to tube overgrowth at terminal cell branch tips, whereas overexpression of Whacked (or dominant-negative Rab35) causes formation of ectopic tubes surrounding the terminal cell nucleus. Thus, vesicle trafficking has key roles in making and shaping seamless tubes

    The Ly6 Protein Coiled Is Required for Septate Junction and Blood Brain Barrier Organisation in Drosophila

    Get PDF
    Background: Genetic analysis of the Drosophila septate junctions has greatly contributed to our understanding of the mechanisms controlling the assembly of these adhesion structures, which bear strong similarities with the vertebrate tight junctions and the paranodal septate junctions. These adhesion complexes share conserved molecular components and have a common function: the formation of paracellular barriers restraining the diffusion of solutes through epithelial and glial envelopes. Methodology/Principal Findings: In this work we characterise the function of the Drosophila cold gene, that codes for a protein belonging to the Ly6 superfamily of extracellular ligands. Analysis of cold mutants shows that this gene is specifically required for the organisation of the septate junctions in epithelial tissues and in the nervous system, where its contribution is essential for the maintenance of the blood-brain barrier. We show that cold acts in a cell autonomous way, and we present evidence indicating that this protein could act as a septate junction component. Conclusion/Significance: We discuss the specific roles of cold and three other Drosophila members of the Ly6 superfamily that have been shown to participate in a non-redundant way in the process of septate junction assembly. We propose tha
    corecore