243 research outputs found

    Materials review for improved automotive gas turbine engine

    Get PDF
    The potential role of superalloys, refractory alloys, and ceramics in the hottest sections of engines operating with turbine inlet temperatures as high as 1370 C is examined. The convential superalloys, directionally solidified eutectics, oxide dispersion strenghened alloys, and tungsten fiber reinforced superalloys are reviewed and compared on the basis of maximum turbine blade temperature capability. Improved high temperature protective coatings and special fabrication techniques for these advanced alloys are discussed. Chromium, columbium, molybdenum, tantalum, and tungsten alloys are also reviewed. Molbdenum alloys are found to be the most suitable for mass produced turbine wheels. Various forms and fabrication processes for silicon nitride, silicon carbide, and SIALON's are investigated for use in highstress and medium stress high temperature environments

    DBpedia SPARQL Benchmark – Performance Assessment with Real Queries on Real Data

    Full text link
    Abstract. Triple stores are the backbone of increasingly many Data Web appli-cations. It is thus evident that the performance of those stores is mission critical for individual projects as well as for data integration on the Data Web in gen-eral. Consequently, it is of central importance during the implementation of any of these applications to have a clear picture of the weaknesses and strengths of current triple store implementations. In this paper, we propose a generic SPARQL benchmark creation procedure, which we apply to the DBpedia knowledge base. Previous approaches often compared relational and triple stores and, thus, settled on measuring performance against a relational database which had been con-verted to RDF by using SQL-like queries. In contrast to those approaches, our benchmark is based on queries that were actually issued by humans and applica-tions against existing RDF data not resembling a relational schema. Our generic procedure for benchmark creation is based on query-log mining, clustering and SPARQL feature analysis. We argue that a pure SPARQL benchmark is more use-ful to compare existing triple stores and provide results for the popular triple store implementations Virtuoso, Sesame, Jena-TDB, and BigOWLIM. The subsequent comparison of our results with other benchmark results indicates that the per-formance of triple stores is by far less homogeneous than suggested by previous benchmarks. 1

    Reproducibility, bioinformatic analysis and power of the SAGE method to evaluate changes in transcriptome

    Get PDF
    The serial analysis of gene expression (SAGE) method is used to study global gene expression in cells or tissues in various experimental conditions. However, its reproducibility has not yet been definitively assessed. In this study, we have evaluated the reproducibility of the SAGE method and identified the factors that affect it. The determination coefficient (R(2)) for the reproducibility of SAGE is 0.96. However, there are some factors that can affect the reproducibility of SAGE, such as the replication of concatemers and ditags, the number of sequenced tags and double PCR amplification of ditags. Thus, corrections for these factors must be made to ensure the reproducibility and accuracy of SAGE results. A bioinformatic analysis of SAGE data is also presented in order to eliminate these artifacts. Finally, the current study shows that increasing the number of sequenced tags improves the power of the method to detect transcripts and their regulation by experimental conditions

    Germline copy number variation in the YTHDC2 gene: does it have a role in finding a novel potential molecular target involved in pancreatic adenocarcinoma susceptibility?

    Get PDF
    Objective: The vast majority of pancreatic cancers occurs sporadically. The discovery of frequent variations in germline gene copy number can significantly influence the expression levels of genes that predispose to pancreatic adenocarcinoma. We prospectively investigated whether patients with sporadic pancreatic adenocarcinoma share specific gene copy number variations (CNVs) in their germline DNA. Patients and methods: DNA samples were analyzed from peripheral leukocytes from 72 patients with a diagnosis of sporadic pancreatic adenocarcinoma and from 60 controls using Affymetrix 500K array set. Multiplex ligation-dependent probe amplification (MLPA) assay was performed using a set of self-designed MLPA probes specific for seven target sequences. Results: We identified a CNV-containing DNA region associated with pancreatic cancer risk. This region shows a deletion of 1 allele in 36 of the 72 analyzed patients but in none of the controls. This region is of particular interest since it contains the YTHDC2 gene encoding for a putative DNA/RNA helicase, such protein being frequently involved in cancer susceptibility. Interestingly, 82.6% of Sicilian patients showed germline loss of one allele. Conclusions: Our results suggest that the YTHDC2 gene could be a potential candidate for pancreatic cancer susceptibility and a useful marker for early detection as well as for the development of possible new therapeutic strategies

    Multilayer biological networks to upscale marine research to global change-smart management and sustainable resource use

    Get PDF
    Human activities are having a massive negative impact on biodiversity and ecological processes worldwide. The rate and magnitude of ecological transformations induced by climate change, habitat destruction, overexploitation and pollution are now so substantial that a sixth mass extinction event is currently underway. The biodiversity crisis of the Anthropocene urges scientists to put forward a transformative vision to promote the conservation of biodiversity, and thus indirectly the preservation of ecosystem functions. Here, we identify pressing issues in global change biology research and propose an integrative framework based on multilayer biological networks as a tool to support conservation actions and marine risk assessments in multi-stressor scenarios. Multilayer networks can integrate different levels of environmental and biotic complexity, enabling us to combine information on molecular, physiological and behaviour responses, species interactions and biotic communities. The ultimate aim of this framework is to link human-induced environmental changes to species physiology, fitness, biogeography and ecosystem impacts across vast seascapes and time frames, to help guide solutions to address biodiversity loss and ecological tipping points. Further, we also define our current ability to adopt a widespread use of multilayer networks within ecology, evolution and conservation by providing examples of case-studies. We also assess which approaches are ready to be transferred and which ones require further development before use. We conclude that multilayer biological networks will be crucial to inform (using reliable multi-levels integrative indicators) stakeholders and support their decision-making concerning the sustainable use of resources and marine conservation

    Real-time dynamic atomic spectroscopy using electro-optic frequency combs

    Get PDF
    Published 25 October 2016Spectroscopy is a key technology for both fundamental and applied science. A long-held desire has been the development of a means to continuously acquire broadband spectral data with simultaneous high time and frequency resolution. Frequency-comb technology can open this door: here, we use a spectroscopic technique based on an electro-optic comb to make continuous observations of cesium vapor across a 3.2-GHz spectral bandwidth with a 2-μs time resolution and with 10-MHz frequency sampling. We use a rapidly switched pump laser to burn narrow features into the spectral line and study the response to this step perturbation. This examination allows us to see a number of unexpected effects, including the temporal evolution of the bandwidth, the amplitude, and the frequency of these burnt features. We also report on the previously unobserved effect of radiation reabsorption, which slowly produces a broad pedestal of perturbation around each feature. We present models that can explain these dynamical effects.Nicolas Bourbeau Hébert, Vincent Michaud-Belleau, Christopher Perrella, Gar-Wing Truong, James D. Anstie, Thomas M. Stace, Jérôme Genest, and Andre N. Luite

    Analysis of Germline Gene Copy Number Variants of Patients with Sporadic Pancreatic Adenocarcinoma Reveals Specific Variations

    Get PDF
    Objectives: The rapid fatality of pancreatic cancer is, in large part, the result of diagnosis at an advanced stage in the majority of patients. Identification of individuals at risk of developing pancreatic adenocarcinoma would be useful to improve the prognosis of this disease. There is presently no biological or genetic indicator allowing the detection of patients at risk. Our main goal was to identify copy number variants (CNVs) common to all patients with sporadic pancreatic cancer. Methods: We analyzed gene CNVs in leukocyte DNA from 31 patients with sporadic pancreatic adenocarcinoma and from 93 matched controls. Genotyping was performed with the use of the GeneChip Human Mapping 500K Array Set (Affymetrix). Results: We identified 431 single nucleotide polymorphism (SNP) probes with abnormal hy-bridization signal present in the DNA of all 31 patients. Of these SNP probes, 284 corresponded to 3 or more copies and 147 corresponded to 1 or 0 copies. Several cancer-associated genes were amplified in all patients. Conversely, several genes supposed to oppose cancer development were present as single copy. Conclusions: These data suggest that a set of 431 CNVs could be associated with the disease. This set could be useful for early diagnosis

    Semantic Web integration of Cheminformatics resources with the SADI framework

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The diversity and the largely independent nature of chemical research efforts over the past half century are, most likely, the major contributors to the current poor state of chemical computational resource and database interoperability. While open software for chemical format interconversion and database entry cross-linking have partially addressed database interoperability, computational resource integration is hindered by the great diversity of software interfaces, languages, access methods, and platforms, among others. This has, in turn, translated into limited reproducibility of computational experiments and the need for application-specific computational workflow construction and semi-automated enactment by human experts, especially where emerging interdisciplinary fields, such as systems chemistry, are pursued. Fortunately, the advent of the Semantic Web, and the very recent introduction of RESTful Semantic Web Services (SWS) may present an opportunity to integrate all of the existing computational and database resources in chemistry into a machine-understandable, unified system that draws on the entirety of the Semantic Web.</p> <p>Results</p> <p>We have created a prototype framework of Semantic Automated Discovery and Integration (SADI) framework SWS that exposes the QSAR descriptor functionality of the Chemistry Development Kit. Since each of these services has formal ontology-defined input and output classes, and each service consumes and produces RDF graphs, clients can automatically reason about the services and available reference information necessary to complete a given overall computational task specified through a simple SPARQL query. We demonstrate this capability by carrying out QSAR analysis backed by a simple formal ontology to determine whether a given molecule is drug-like. Further, we discuss parameter-based control over the execution of SADI SWS. Finally, we demonstrate the value of computational resource envelopment as SADI services through service reuse and ease of integration of computational functionality into formal ontologies.</p> <p>Conclusions</p> <p>The work we present here may trigger a major paradigm shift in the distribution of computational resources in chemistry. We conclude that envelopment of chemical computational resources as SADI SWS facilitates interdisciplinary research by enabling the definition of computational problems in terms of ontologies and formal logical statements instead of cumbersome and application-specific tasks and workflows.</p
    • …
    corecore