59 research outputs found
DNA-methylation dependent regulation of embryo-specific 5S ribosomal DNA cluster transcription in adult tissues of sea urchin Paracentrotus lividus
We have previously reported a molecular and cytogenetic characterization of three different
5S rDNA clusters in the sea urchin Paracentrotus lividus and recently, demonstrated the presence of
high heterogeneity in functional 5S rRNA. In this paper, we show some important distinctive data on 5S
rRNA transcription for this organism. Using Single Strand Conformation Polymorphism (SSCP)
analysis, we demonstrate the existence of two classes of 5S rRNA, one which is embryo-specific and
encoded by the smallest (700bp) cluster and the other which is expressed at every stage and encoded
by longer clusters (900 and 950bp). We also demonstrate that the embryo-specific class of 5S rRNA is
expressed in oocytes and embryonic stages and is silenced in adult tissue and that this phenomenon
appears to be due exclusively to DNA methylation, as indicated by sensitivity to 5-azacytidine, unlike
Xenopus where this mechanism is necessary but not sufficient to maintain the silenced status
Role and importance of polymorphisms with respect to DNA methylation for the expression of CYP2E1 enzyme
Different individuals possess slightly different genetic information and show genetically-determined differences
in several enzyme activities due to genetic variability. Following an integrated approach,we studied the polymorphisms
andmethylation of sites contained in the 5′ flanking region of themetabolizing enzyme CYP2E1 in correlation
to its expression in both tumor and non-neoplastic liver cell lines, since to date little is known about the
influence of these (epi)genetic elements in basal conditions and under induction by the specific inductor and a
demethylating agent. In treated cells, reduced DNA methylation, assessed both at genomic and gene level, was
not consistently associatedwith the increase of enzyme expression. Interestingly, the Rsa/Pst haplotype differentially
influenced CYP2E1 enzyme expression. In addition, regarding the Variable Number of Tandem Repeats
polymorphism, cells with A4/A4 genotype showed a greater expression inhibition (ranging from 20% to 30%)
compared with others carrying the A2/A2 one, while those cells bringing A2/A3 genotype showed an increase
of expression (of 25%, about). Finally, we demonstrated for the first time that the A2 and A3 CYP2E1 alleles
play a more important role in the expression of the enzyme, compared with other (epi)genetic factors, since
they are binding sites for trans-acting proteins
Mung Bean nuclease mapping of RNAs 3' end
A method is described that allows an accurate mapping of 3' ends of RNAs. In this method a labeled DNA probe, containing the presumed 3' end of the RNA under analysis is allowed to anneals to the RNA itself. Mung-bean nuclease is then used to digest single strands of both RNA and DNA. Electrophoretic fractionation of "protected" undigested, labeled DNA is than performed using a sequence reaction of a known DNA as length marker. This procedure was applied to the analysis of both a polyA RNA (Interleukin 10 mRNA) and non polyA RNAs (sea urchin 18S and 26S rRNAs). This method might be potentially relevant for the evaluation of the role of posttrascriptional control of IL-10 in the pathogenesis of the immune and inflammatory mediated diseases associated to ageing. This might allow to develop new strategies to approach to the diagnosis and therapy of age related diseases
Osteoarthritis in the Elderly Population: Preclinical Evidence of Nutrigenomic Activities of Flavonoids
Osteoarthritis (OA) is a degenerative joint disease that is age-related and progressive. It causes the destruction of articular cartilage and underlying bone, often aggravated by inflammatory processes and oxidative stresses. This pathology impairs the quality of life of the elderly, causing pain, reduced mobility, and functional disabilities, especially in obese patients. Phytochemicals with anti-inflammatory and antioxidant activities may be used for long-term treatment of OA, either in combination with current anti-inflammatories and painkillers, or as an alternative to other products such as glucosamine and chondroitin, which improve cartilage structure and elasticity. The current systematic review provides a comprehensive understanding of the use of flavonoids. It highlights chondrocyte, cartilage, and subchondral bone activities, with a particular focus on their nutrigenomic effects. The molecular mechanisms of these molecules demonstrate how they can be used for the prevention and treatment of OA in the elderly population. However, clinical trials are still needed for effective use in clinical practice
Chapter Il Piccolo Masaccio e le Terre Nuove. Creativity and Computer Graphics for Museum Edutainment
Since its opening, the Museum of the New Towns, housed in the Palazzo di Arnolfo in San Giovanni Valdarno, has dedicated a particular attention to the relationship with its audiences. In this context, the video “Il piccolo Masaccio e le Terre Nuove” has the purpose of bringing children and young people, in particular, closer to the museum main themes. The video presents a series of very different techniques, such as live shots, taken also by drone, Computer Graphics, 2D drawings executed with a tablet, drawings sketched with traditional techniques, such as India ink and watercolours, and digital videos taken from Google Earth
Sharing Circulating Micro-RNAs between Osteoporosis and Sarcopenia: A Systematic Review
Background: Osteosarcopenia, a combination of osteopenia/osteoporosis and sarcopenia,is a common condition among older adults. While numerous studies and meta-analyses have beenconducted on osteoporosis biomarkers, biomarker utility in osteosarcopenia still lacks evidence. Here,we carried out a systematic review to explore and analyze the potential clinical of circulating microR-NAs (miRs) shared between osteoporosis/osteopenia and sarcopenia. Methods: We performed asystematic review on PubMed, Scopus, and Embase for differentially expressed miRs (p-value < 0.05)in (i) osteoporosis and (ii) sarcopenia. Following screening for title and abstract and deduplication,83 studies on osteoporosis and 11 on sarcopenia were identified for full-text screening. Full-textscreening identified 54 studies on osteoporosis, 4 on sarcopenia, and 1 on both osteoporosis andsarcopenia. Results: A total of 69 miRs were identified for osteoporosis and 14 for sarcopenia. Therewere 9 shared miRs, with evidence of dysregulation (up- or down-regulation), in both osteoporo-sis and sarcopenia: miR-23a-3p, miR-29a, miR-93, miR-133a and b, miR-155, miR-206, miR-208,miR-222, and miR-328, with functions and targets implicated in the pathogenesis of osteosarcopenia.However, there was little agreement in the results across studies and insufficient data for miRsin sarcopenia, and only three miRs, miR-155, miR-206, and miR-328, showed the same directionof dysregulation (down-regulation) in both osteoporosis and sarcopenia. Additionally, for mostidentified miRs there has been no replication by more than one study, and this is particularly true forall miRs analyzed in sarcopenia. The study quality was typically rated intermediate/high risk of bias.The large heterogeneity of the studies made it impossible to perform a meta-analysis. Conclusions:The findings of this review are particularly novel, as miRs have not yet been explored in the context ofosteosarcopenia. The dysregulation of miRs identified in this review may provide important clues tobetter understand the pathogenesis of osteosarcopenia, while also laying the foundations for furtherstudies to lead to effective screening, monitoring, or treatment strategies
(PDF) Sharing Circulating Micro-RNAs between Osteoporosis and Sarcopenia: A Systematic Review. Available from: https://www.researchgate.net/publication/368667300_Sharing_Circulating_Micro-RNAs_between_Osteoporosis_and_Sarcopenia_A_Systematic_Review [accessed Feb 26 2023]
Enzymatic TET-1 inhibition highlights different epigenetic behaviours of IL-1β and TNFα in tumour progression of OS cell lines
Osteosarcoma (OS) is the most frequent primary malignant bone tumour, whose heterogeneity represents a major challenge for common antitumour therapies. Inflammatory cytokines are known to be necessary for OS progression. Therefore, to optimise therapy, it is important to discover reliable biomarkers by identifying the mechanism generating OS and investigating the inflammatory pathways that support the undifferentiated state. In this work, we highlight the differences of epigenetic activities of IL-1 beta and TNF alpha, and the susceptibility of TET-1 enzymatic inhibition, in tumour progression of three different OS cell lines. Investigating DNA methylation of IL-6 promoter and determining its expression, we found that TET enzymatic inhibition influences proliferation induced by inflammatory cytokines in OS cell lines. Moreover, Bobcat 339 treatment blocks IL-1 beta epigenetic action on IL-6 promoter, while only partially those of TNF alpha as well as inhibits IL-1 beta-dependent epithelial-mesenchymal transition (EMT) process, but only partially those of TNF alpha. In conclusion, this work highlights that IL-1 beta and TNF alpha have different effects on DNA demethylation in OS cell lines, making DNA methylation a potential biomarker of disease. Specifically, in IL-1 beta treatment, TET-1 inhibition completely blocks tumour progression, while in TNF alpha actions, it is only partially effective. Given that these two inflammatory pathways can be therapeutic targets for treating these tumours, knowledge of their distinct epigenetic behaviours can be useful for developing precise and specific therapeutic strategies for this disease
How miR-31-5p and miR-33a-5p Regulates SP1/CX43 Expression in Osteoarthritis Disease: Preliminary Insights
Osteoarthritis (OA) is a degenerative bone disease that involved micro and macro-environment of joints. To date, there are no radical curative treatments for OA and novel therapies are mandatory. Recent evidence suggests the role of miRNAs in OA progression. In our previous studies, we demonstrated the role of miR-31-5p and miR-33a families in different bone regeneration signaling. Here, we investigated the role of miR-31-5p and miR-33a-5p in OA progression. A different expression of miR-31-5p and miR-33a-5p into osteoblasts and chondrocytes isolated from joint tissues of OA patients classified in based on different Kellgren and Lawrence (KL) grading was highlighted; and through a bioinformatic approach the common miRNAs target Specificity proteins (Sp1) were identified. Sp1 regulates the expression of gap junction protein Connexin43 (Cx43), which in OA drives the modification of (i) osteoblasts and chondrocytes genes expression, (ii) joint inflammation cytokines releases and (iii) cell functions. Concerning this, thanks to gain and loss of function studies, the possible role of Sp1 as a modulator of CX43 expression through miR-31-5p and miR-33a-5p action was also evaluated. Finally, we hypothesize that both miRNAs cooperate to modulate the expression of SP1 in osteoblasts and chondrocytes and interfering, consequently, with CX43 expression, and they might be further investigated as new possible biomarkers for OA
Multiple Myeloma-Derived Extracellular Vesicles Induce Osteoclastogenesis through the Activation of the XBP1/IRE1\u3b1 Axis
Bone disease severely affects the quality of life of over 70% of multiple myeloma (MM) patients, which daily experience pain, pathological fractures, mobility issues and an increased mortality. Recent data have highlighted the crucial role of the endoplasmic reticulum-associated unfolded protein response (UPR) in malignant transformation and tumor progression; therefore, targeting of UPR-related molecules may open novel therapeutic avenues. Endoplasmic reticulum (ER) stress and UPR pathways are constitutively activated in MM cells, which are characterized by an increased protein turnover as a consequence of high production of immunoglobulins and high rates of protein synthesis. A great deal of scientific data also evidenced that a mild activation of UPR pathway can regulate cellular differentiation. Our previous studies revealed that MM cell-derived small extracellular vesicle (MM-EV) modulated osteoclasts (OCs) function and induced OCs differentiation. Here, we investigated the role of the UPR pathway, and in particular of the IRE1\u3b1/XBP1 axis, in osteoclastogenesis induced by MM-EVs. By proteomic analysis, we identified UPR signaling molecules as novel MM-EV cargo, prompting us to evaluate the effects of the MM-EVs on osteoclastogenesis through UPR pathway. MM-EVs administration in a murine macrophage cell line rapidly induced activation of IRE1\u3b1 by phosphorylation in S724; accordingly, Xbp1 mRNA splicing was increased and the transcription of NFATc1, a master transcription factor for OCs differentiation, was activated. Some of these results were also validated using both human primary OC cultures and MM-EVs from MM patients. Notably, a chemical inhibitor of IRE1\u3b1 (GSK2850163) counteracted MM-EV-triggered OC differentiation, hampering the terminal stages of OCs differentiation and reducing bone resorption
- …