11 research outputs found

    Lunar impact flash results and space surveillance activities at Kryoneri Observatory

    Full text link
    We present current and future activities regarding lunar impact flash and NEO observations and satellite tracking from Kryoneri Observatory. In particular, we present results from the ESA-funded NELIOTA program, which has been monitoring the Moon for impact flashes since early 2017. Using the 1.2 m Kryoneri telescope, which is equipped with two high frame-rate cameras recording simultaneously in two optical bands, NELIOTA has recorded over 170 validated lunar impact flashes, while another ~90 have been characterized as suspected. We present statistical results concerning the sizes, the masses and the appearance frequency of the meteoroids in the vicinity of the Earth, as well as the temperatures developed during the impacts. Moreover, we present the capabilities of the Kryoneri telescope as a sensor for satellite tracking and the future plans regarding the provision of high-quality services for both the Planetary Defense activities of ESA (S2P/PDO) and the European Union's Space Surveillance and Tracking programme (EU/SST).Comment: 14 pages, 19 figures. Proceedings of the 2nd NEO and Debris Detection Conference, Darmstadt, Germany, 24-26 January 202

    Indication of Mass Segregation in LMC Star Clusters

    No full text
    In this contribution we present our investigation on mass segregation in selected LMC star clusters. As a diagnostic of mass segregation we use: (1) Colour-magnitude diagrams at various distance from each cluster centre; (2) Radial-density profiles at various magnitude ranges; and (3) comparison with dynamical models which provide core-radius, a measure of a cluster’s compactness

    NELIOTA: ESA's new NEO lunar impact monitoring project with the 1.2m telescope at the National Observatory of Athens

    No full text
    NELIOTA is a new ESA activity launched at the National Observatory of Athens in February 2015 aiming to determine the distribution and frequency of small near-earth objects via lunar monitoring. The objective of this 3.5 year activity is to design, develop and implement a highly automated lunar monitoring system, which will conduct an observing campaign for 2 years, starting in the Summer 2016, in search of NEO impact flashes on the Moon. The project involves: (i) a complete refurbishment of the 40 year old 1.2m Kryoneri telescope of the National Observatory of Athens, (ii) development of a Lunar imager for the prime focus with two fast-frame sCMOS cameras, and (iii) procurement of servers for data processing and storage. Furthermore, we have developed a software system that controls the telescope and the cameras, processes the images and automatically detects lunar flashes. NELIOTA provides a web-based user interface, where the impact events, after their verification and characterization, will be reported and made available to the scientific community and the general public. The novelty of this project is the dedication of a large, 1.2m telescope for lunar monitoring, which is expected to characterize the frequency and distribution of NEOs weighing as little as a few grams

    Gaia Data Release 3: astrophysical parameters inference system (Apsis). I. Methods and content overview

    No full text
    Gaia Data Release 3 contains a wealth of new data products for the community. Astrophysical parameters are a major component of this release, and were produced by the Astrophysical parameters inference system (Apsis) within the Gaia Data Processing and Analysis Consortium (DPAC). The aim of this paper is to describe the overall content of the astrophysical parameters in Gaia DR3 and how they were produced. In Apsis, we use the mean BP/RP and mean RVS spectra along with astrometry and photometry, and we derive the following parameters: source classification and probabilities for 1.6 billion objects; interstellar medium characterisation and distances for up to 470 million sources, including a 2D total Galactic extinction map; 6 million redshifts of quasar candidates; 1.4 million redshifts of galaxy candidates; and an analysis of 50 million outlier sources through an unsupervised classification. The astrophysical parameters also include many stellar spectroscopic and evolutionary parameters for up to 470 million sources. These comprise Teff, log g, and [M/H] (470 million using BP/RP, 6 million using RVS), radius (470 million), mass (140 million), age (120 million), chemical abundances (up to 5 million), diffuse interstellar band analysis (0.5 million), activity indices (2 million), Hα equivalent widths (200 million), and further classification of spectral types (220 million) and emission-line stars (50 000). This paper is the first in a series of three papers, and focusses on describing the global content of the parameters in Gaia DR3. The accompanying Papers II and III focus on the validation and use of the stellar and non-stellar products, respectively. This catalogue is the most extensive homogeneous database of astrophysical parameters to date, and is based uniquely on Gaia data. It will only be superseded by Gaia Data Release 4, and will therefore remain a key reference over the next four years, providing astrophysical parameters independent of other ground- and space-based data.The Gaia mission and data processing have financially been supported by, in alphabetical order by country: – the Algerian Centre de Recherche en Astronomie, Astrophysique et GĂ©ophysique of Bouzareah Observatory; – the Austrian Fonds zur Förderung der wissenschaftlichen Forschung (FWF) Hertha Firnberg Programme through grants T359, P20046, and P23737; – the BELgian federal Science Policy Office (BELSPO) through various PROgramme de DĂ©veloppement d’ExpĂ©riences scientifiques (PRODEX) grants, the Research Foundation Flanders (Fonds Wetenschappelijk Onderzoek) through grant VS.091.16N, the Fonds de la Recherche Scientifique (FNRS), and the Research Council of Katholieke Universiteit (KU) Leuven through grant C16/18/005 (Pushing AsteRoseismology to the next level with TESS, GaiA, and the Sloan DIgital Sky SurvEy – PARADISE); – the Brazil-France exchange programmes Fundação de Amparo Ă  Pesquisa do Estado de SĂŁo Paulo (FAPESP) and Coordenação de Aperfeicoamento de Pessoal de NĂ­vel Superior (CAPES) - ComitĂ© Français d’Evaluation de la CoopĂ©ration Universitaire et Scientifique avec le BrĂ©sil (COFECUB); – the Chilean Agencia Nacional de InvestigaciĂłn y Desarrollo (ANID) through Fondo Nacional de Desarrollo CientĂ­fico y TecnolĂłgico (FONDECYT) Regular Project 1210992 (L. Chemin); – the National Natural Science Foundation of China (NSFC) through grants 11573054, 11703065, and 12173069, the China Scholarship Council through grant 201806040200, and the Natural Science Foundation of Shanghai through grant 21ZR1474100; – the Tenure Track Pilot Programme of the Croatian Science Foundation and the École Polytechnique FĂ©dĂ©rale de Lausanne and the project TTP-2018-07-1171 ‘Mining the Variable Sky’, with the funds of the Croatian-Swiss Research Programme; – the Czech-Republic Ministry of Education, Youth, and Sports through grant LG 15010 and INTER-EXCELLENCE grant LTAUSA18093, and the Czech Space Office through ESA PECS contract 98058; – the Danish Ministry of Science; – the Estonian Ministry of Education and Research through grant IUT40-1; – the European Commission’s Sixth Framework Programme through the European Leadership in Space Astrometry (ELSA) Marie Curie Research Training Network (MRTN-CT-2006-033481), through Marie Curie project PIOF-GA-2009-255267 (Space AsteroSeismology & RR Lyrae stars, SAS-RRL), and through a Marie Curie Transfer-of-Knowledge (ToK) fellowship (MTKD-CT-2004-014188); the European Commission’s Seventh Framework Programme through grant FP7-606740 (FP7-SPACE-2013-1) for the Gaia European Network for Improved data User Services (GENIUS) and through grant 264895 for the Gaia Research for European Astronomy Training (GREAT-ITN) network; – the European Cooperation in Science and Technology (COST) through COST Action CA18104 ‘Revealing the Milky Way with Gaia(MW-Gaia)’; – the European Research Council (ERC) through grants 320360, 647208, and 834148 and through the European Union’s Horizon 2020 research and innovation and excellent science programmes through Marie SkƂodowska-Curie grant 745617 (Our Galaxy at full HD – Gal-HD) and 895174 (The build-up and fate of self-gravitating systems in the Universe) as well as grants 687378 (Small Bodies: Near and Far), 682115 (Using the Magellanic Clouds to Understand the Interaction of Galaxies), 695099 (A sub-percent distance scale from binaries and Cepheids – CepBin), 716155 (Structured ACCREtion Disks – SACCRED), 951549 (Sub-percent calibration of the extragalactic distance scale in the era of big surveys – UniverScale), and 101004214 (Innovative Scientific Data Exploration and Exploitation Applications for Space Sciences – EXPLORE); – the European Science Foundation (ESF), in the framework of the Gaia Research for European Astronomy Training Research Network Programme (GREAT-ESF); – the European Space Agency (ESA) in the framework of the Gaia project, through the Plan for European Cooperating States (PECS) programme through contracts C98090 and 4000106398/12/NL/KML for Hungary, through contract 4000115263/15/NL/IB for Germany, and through PROgramme de DĂ©veloppement d’ExpĂ©riences scientifiques (PRODEX) grant 4000127986 for Slovenia; – the Academy of Finland through grants 299543, 307157, 325805, 328654, 336546, and 345115 and the Magnus Ehrnrooth Foundation; – the French Centre National d’Études Spatiales (CNES), the Agence Nationale de la Recherche (ANR) through grant ANR-10-IDEX-0001-02 for the ‘Investissements d’avenir’ programme, through grant ANR-15-CE31-0007 for project ‘Modelling the Milky Way in the Gaiaera’ (MOD4Gaia), through grant ANR-14-CE33-0014-01 for project ‘The Milky Way disc formation in the Gaiaera’ (ARCHEOGAL), through grant ANR-15-CE31-0012-01 for project ‘Unlocking the potential of Cepheids as primary distance calibrators’ (UnlockCepheids), through grant ANR-19-CE31-0017 for project ‘Secular evolution of galxies’ (SEGAL), and through grant ANR-18-CE31-0006 for project ‘Galactic Dark Matter’ (GaDaMa), the Centre National de la Recherche Scientifique (CNRS) and its SNO Gaiaof the Institut des Sciences de l’Univers (INSU), its Programmes Nationaux: Cosmologie et Galaxies (PNCG), Gravitation RĂ©fĂ©rences Astronomie MĂ©trologie (PNGRAM), PlanĂ©tologie (PNP), Physique et Chimie du Milieu Interstellaire (PCMI), and Physique Stellaire (PNPS), the ‘Action FĂ©dĂ©ratrice Gaia’ of the Observatoire de Paris, the RĂ©gion de Franche-ComtĂ©, the Institut National Polytechnique (INP) and the Institut National de Physique nuclĂ©aire et de Physique des Particules (IN2P3) co-funded by CNES; – the German Aerospace Agency (Deutsches Zentrum fĂŒr Luft- und Raumfahrt e.V., DLR) through grants 50QG0501, 50QG0601, 50QG0602, 50QG0701, 50QG0901, 50QG1001, 50QG1101, 50QG1401, 50QG1402, 50QG1403, 50QG1404, 50QG1904, 50QG2101, 50QG2102, and 50QG2202, and the Centre for Information Services and High Performance Computing (ZIH) at the Technische UniversitĂ€t Dresden for generous allocations of computer time; – the Hungarian Academy of Sciences through the LendĂŒlet Programme grants LP2014-17 and LP2018-7 and the Hungarian National Research, Development, and Innovation Office (NKFIH) through grant KKP-137523 (‘SeismoLab’); – the Science Foundation Ireland (SFI) through a Royal Society - SFI University Research Fellowship (M. Fraser); – the Israel Ministry of Science and Technology through grant 3-18143 and the Tel Aviv University Center for Artificial Intelligence and Data Science (TAD) through a grant; – the Agenzia Spaziale Italiana (ASI) through contracts I/037/08/0, I/058/10/0, 2014-025-R.0, 2014-025-R.1.2015, and 2018-24-HH.0 to the Italian Istituto Nazionale di Astrofisica (INAF), contract 2014-049-R.0/1/2 to INAF for the Space Science Data Centre (SSDC, formerly known as the ASI Science Data Center, ASDC), contracts I/008/10/0, 2013/030/I.0, 2013-030-I.0.1-2015, and 2016-17-I.0 to the Aerospace Logistics Technology Engineering Company (ALTEC S.p.A.), INAF, and the Italian Ministry of Education, University, and Research (Ministero dell’Istruzione, dell’UniversitĂ  e della Ricerca) through the Premiale project ‘MIning The Cosmos Big Data and Innovative Italian Technology for Frontier Astrophysics and Cosmology’ (MITiC); – the Netherlands Organisation for Scientific Research (NWO) through grant NWO-M-614.061.414, through a VICI grant (A. Helmi), and through a Spinoza prize (A. Helmi), and the Netherlands Research School for Astronomy (NOVA); – the Polish National Science Centre through HARMONIA grant 2018/30/M/ST9/00311 and DAINA grant 2017/27/L/ST9/03221 and the Ministry of Science and Higher Education (MNiSW) through grant DIR/WK/2018/12; – the Portuguese Fundação para a CiĂȘncia e a Tecnologia (FCT) through national funds, grants SFRH/BD/128840/2017 and PTDC/FIS-AST/30389/2017, and work contract DL 57/2016/CP1364/CT0006, the Fundo Europeu de Desenvolvimento Regional (FEDER) through grant POCI-01-0145-FEDER-030389 and its Programa Operacional Competitividade e Internacionalização (COMPETE2020) through grants UIDB/04434/2020 and UIDP/04434/2020, and the Strategic Programme UIDB/00099/2020 for the Centro de AstrofĂ­sica e Gravitação (CENTRA); – the Slovenian Research Agency through grant P1-0188; – the Spanish Ministry of Economy (MINECO/FEDER, UE), the Spanish Ministry of Science and Innovation (MICIN), the Spanish Ministry of Education, Culture, and Sports, and the Spanish Government through grants BES-2016-078499, BES-2017-083126, BES-C-2017-0085, ESP2016-80079-C2-1-R, ESP2016-80079-C2-2-R, FPU16/03827, PDC2021-121059-C22, RTI2018-095076-B-C22, and TIN2015-65316-P (‘ComputaciĂłn de Altas Prestaciones VII’), the Juan de la Cierva IncorporaciĂłn Programme (FJCI-2015-2671 and IJC2019-04862-I for F. Anders), the Severo Ochoa Centre of Excellence Programme (SEV2015-0493), and MICIN/AEI/10.13039/501100011033 (and the European Union through European Regional Development Fund ‘A way of making Europe’) through grant RTI2018-095076-B-C21, the Institute of Cosmos Sciences University of Barcelona (ICCUB, Unidad de Excelencia ‘MarĂ­a de Maeztu’) through grant CEX2019-000918-M, the University of Barcelona’s official doctoral programme for the development of an R+D+i project through an Ajuts de Personal Investigador en FormaciĂł (APIF) grant, the Spanish Virtual Observatory through project AyA2017-84089, the Galician Regional Government, Xunta de Galicia, through grants ED431B-2021/36, ED481A-2019/155, and ED481A-2021/296, the Centro de InvestigaciĂłn en TecnologĂ­as de la InformaciĂłn y las Comunicaciones (CITIC), funded by the Xunta de Galicia and the European Union (European Regional Development Fund – Galicia 2014-2020 Programme), through grant ED431G-2019/01, the Red Española de SupercomputaciĂłn (RES) computer resources at MareNostrum, the Barcelona Supercomputing Centre - Centro Nacional de SupercomputaciĂłn (BSC-CNS) through activities AECT-2017-2-0002, AECT-2017-3-0006, AECT-2018-1-0017, AECT-2018-2-0013, AECT-2018-3-0011, AECT-2019-1-0010, AECT-2019-2-0014, AECT-2019-3-0003, AECT-2020-1-0004, and DATA-2020-1-0010, the Departament d’InnovaciĂł, Universitats i Empresa de la Generalitat de Catalunya through grant 2014-SGR-1051 for project ‘Models de ProgramaciĂł i Entorns d’ExecuciĂł Parallels’ (MPEXPAR), and Ramon y Cajal Fellowship RYC2018-025968-I funded by MICIN/AEI/10.13039/501100011033 and the European Science Foundation (‘Investing in your future’); – the Swedish National Space Agency (SNSA/Rymdstyrelsen); – the Swiss State Secretariat for Education, Research, and Innovation through the Swiss ActivitĂ©s Nationales ComplĂ©mentaires and the Swiss National Science Foundation through an Eccellenza Professorial Fellowship (award PCEFP2_194638 for R. Anderson); – the United Kingdom Particle Physics and Astronomy Research Council (PPARC), the United Kingdom Science and Technology Facilities Council (STFC), and the United Kingdom Space Agency (UKSA) through the following grants to the University of Bristol, the University of Cambridge, the University of Edinburgh, the University of Leicester, the Mullard Space Sciences Laboratory of University College London, and the United Kingdom Rutherford Appleton Laboratory (RAL): PP/D006511/1, PP/D006546/1, PP/D006570/1, ST/I000852/1, ST/J005045/1, ST/K00056X/1, ST/K000209/1, ST/K000756/1, ST/L006561/1, ST/N000595/1, ST/N000641/1, ST/N000978/1, ST/N001117/1, ST/S000089/1, ST/S000976/1, ST/S000984/1, ST/S001123/1, ST/S001948/1, ST/S001980/1, ST/S002103/1, ST/V000969/1, ST/W002469/1, ST/W002493/1, ST/W002671/1, ST/W002809/1, and EP/V520342/1. The GBOT programme uses observations collected at (i) the European Organisation for Astronomical Research in the Southern Hemisphere (ESO) with the VLT Survey Telescope (VST), under ESO programmes 092.B-0165, 093.B-0236, 094.B-0181, 095.B-0046, 096.B-0162, 097.B-0304, 098.B-0030, 099.B-0034, 0100.B-0131, 0101.B-0156, 0102.B-0174, and 0103.B-0165; and (ii) the Liverpool Telescope, which is operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de AstrofĂ­sica de Canarias with financial support from the United Kingdom Science and Technology Facilities Council, and (iii) telescopes of the Las Cumbres Observatory Global Telescope Network

    Gaia Data Release 3: Apsis. III. Non-stellar content and source classification

    No full text
    Context. As part of the third Gaia Data Release, we present the contributions of the non-stellar and classification modules from the eighth coordination unit (CU8) of the Data Processing and Analysis Consortium, which is responsible for the determination of source astrophysical parameters using Gaia data. This is the third in a series of three papers describing the work done within CU8 for this release. Aims. For each of the five relevant modules from CU8, we summarise their objectives, the methods they employ, their performance, and the results they produce for Gaia DR3. We further advise how to use these data products and highlight some limitations. Methods. The Discrete Source Classifier (DSC) module provides classification probabilities associated with five types of sources: quasars, galaxies, stars, white dwarfs, and physical binary stars. A subset of these sources are processed by the Outlier Analysis (OA) module, which performs an unsupervised clustering analysis, and then associates labels with the clusters to complement the DSC classification. The Quasi Stellar Object Classifier (QSOC) and the Unresolved Galaxy Classifier (UGC) determine the redshifts of the sources classified as quasar and galaxy by the DSC module. Finally, the Total Galactic Extinction (TGE) module uses the extinctions of individual stars determined by another CU8 module to determine the asymptotic extinction along all lines of sight for Galactic latitudes |b|> 5°. Results.Gaia DR3 includes 1591 million sources with DSC classifications; 56 million sources to which the OA clustering is applied; 1.4 million sources with redshift estimates from UGC; 6.4 million sources with QSOC redshift; and 3.1 million level 9 HEALPixes of size 0.013 deg2 where the extinction is evaluated by TGE. Conclusions. Validation shows that results are in good agreement with values from external catalogues; for example 90% of the QSOC redshifts have absolute error lower than 0.1 for sources with empty warning flags, while UGC redshifts have a mean error of 0.008 ± 0.037 if evaluated on a clean set of spectra. An internal validation of the OA results further shows that 30 million sources are located in high confidence regions of the clustering map.The Gaia mission and data processing have financially been supported by, in alphabetical order by country: ‱ the Algerian Centre de Recherche en Astronomie, Astrophysique et GĂ©ophysique of Bouzareah Observatory; ‱ the Austrian Fonds zur Förderung der wissenschaftlichen Forschung (FWF) Hertha Firnberg Programme through grants T359, P20046, and P23737; ‱ the BELgian federal Science Policy Office (BELSPO) through various PROgramme de DĂ©veloppement d’ExpĂ©riences scientifiques (PRODEX) grants and the Polish Academy of Sciences - Fonds Wetenschappelijk Onderzoek through grant VS.091.16N, and the Fonds de la Recherche Scientifique (FNRS), and the Research Council of Katholieke Universiteit (KU) Leuven through grant C16/18/005 (Pushing AsteRoseismology to the next level with TESS, GaiA, and the Sloan DIgital Sky SurvEy – PARADISE); ‱ the Brazil-France exchange programmes Fundação de Amparo Ă  Pesquisa do Estado de SĂŁo Paulo (FAPESP) and Coordenação de Aperfeicoamento de Pessoal de NĂ­vel Superior (CAPES) - ComitĂ© Français d’Evaluation de la CoopĂ©ration Universitaire et Scientifique avec le BrĂ©sil (COFECUB); ‱ the Chilean Agencia Nacional de InvestigaciĂłn y Desarrollo (ANID) through Fondo Nacional de Desarrollo CientĂ­fico y TecnolĂłgico (FONDECYT) Regular Project 1210992 (L. Chemin); ‱ the National Natural Science Foundation of China (NSFC) through grants 11573054, 11703065, and 12173069, the China Scholarship Council through grant 201806040200, and the Natural Science Foundation of Shanghai through grant 21ZR1474100; ‱ the Tenure Track Pilot Programme of the Croatian Science Foundation and the École Polytechnique FĂ©dĂ©rale de Lausanne and the project TTP-2018-07-1171 ‘Mining the Variable Sky’, with the funds of the Croatian-Swiss Research Programme; ‱ the Czech-Republic Ministry of Education, Youth, and Sports through grant LG 15010 and INTER-EXCELLENCE grant LTAUSA18093, and the Czech Space Office through ESA PECS contract 98058; ‱ the Danish Ministry of Science; ‱ the Estonian Ministry of Education and Research through grant IUT40-1; ‱ the European Commission’s Sixth Framework Programme through the European Leadership in Space Astrometry (ELSA) Marie Curie Research Training Network (MRTN-CT-2006-033481), through Marie Curie project PIOF-GA-2009-255267 (Space AsteroSeismology & RR Lyrae stars, SAS-RRL), and through a Marie Curie Transfer-of-Knowledge (ToK) fellowship (MTKD-CT-2004-014188); the European Commission’s Seventh Framework Programme through grant FP7-606740 (FP7-SPACE-2013-1) for the Gaia European Network for Improved data User Services (GENIUS) and through grant 264895 for the Gaia Research for European Astronomy Training (GREAT-ITN) network; ‱ the European Cooperation in Science and Technology (COST) through COST Action CA18104 ‘Revealing the Milky Way with Gaia (MW-Gaia)’; ‱ the European Research Council (ERC) through grants 320360, 647208, and 834148 and through the European Union’s Horizon 2020 research and innovation and excellent science programmes through Marie SkƂodowska-Curie grant 745617 (Our Galaxy at full HD – Gal-HD) and 895174 (The build-up and fate of self-gravitating systems in the Universe) as well as grants 687378 (Small Bodies: Near and Far), 682115 (Using the Magellanic Clouds to Understand the Interaction of Galaxies), 695099 (A sub-percent distance scale from binaries and Cepheids – CepBin), 716155 (Structured ACCREtion Disks – SACCRED), 951549 (Sub-percent calibration of the extragalactic distance scale in the era of big surveys – UniverScale), and 101004214 (Innovative Scientific Data Exploration and Exploitation Applications for Space Sciences – EXPLORE); ‱ the European Science Foundation (ESF), in the framework of the Gaia Research for European Astronomy Training Research Network Programme (GREAT-ESF); ‱ the European Space Agency (ESA) in the framework of the Gaia project, through the Plan for European Cooperating States (PECS) programme through contracts C98090 and 4000106398/12/NL/KML for Hungary, through contract 4000115263/15/NL/IB for Germany, and through PROgramme de DĂ©veloppement d’ExpĂ©riences scientifiques (PRODEX) grant 4000127986 for Slovenia; ‱ the Academy of Finland through grants 299543, 307157, 325805, 328654, 336546, and 345115 and the Magnus Ehrnrooth Foundation; ‱ the French Centre National d’Études Spatiales (CNES), the Agence Nationale de la Recherche (ANR) through grant ANR-10-IDEX-0001-02 for the ‘Investissements d’avenir’ programme, through grant ANR-15-CE31-0007 for project ‘Modelling the Milky Way in the Gaia era’ (MOD4Gaia), through grant ANR-14-CE33-0014-01 for project ‘The Milky Way disc formation in the Gaia era’ (ARCHEOGAL), through grant ANR-15-CE31-0012-01 for project ‘Unlocking the potential of Cepheids as primary distance calibrators’ (UnlockCepheids), through grant ANR-19-CE31-0017 for project ‘Secular evolution of galxies’ (SEGAL), and through grant ANR-18-CE31-0006 for project ‘Galactic Dark Matter’ (GaDaMa), the Centre National de la Recherche Scientifique (CNRS) and its SNO Gaia of the Institut des Sciences de l’Univers (INSU), its Programmes Nationaux: Cosmologie et Galaxies (PNCG), Gravitation RĂ©fĂ©rences Astronomie MĂ©trologie (PNGRAM), PlanĂ©tologie (PNP), Physique et Chimie du Milieu Interstellaire (PCMI), and Physique Stellaire (PNPS), the ‘Action FĂ©dĂ©ratrice Gaia’ of the Observatoire de Paris, the RĂ©gion de Franche-ComtĂ©, the Institut National Polytechnique (INP) and the Institut National de Physique nuclĂ©aire et de Physique des Particules (IN2P3) co-funded by CNES; ‱ the German Aerospace Agency (Deutsches Zentrum fĂŒr Luft- und Raumfahrt e.V., DLR) through grants 50QG0501, 50QG0601, 50QG0602, 50QG0701, 50QG0901, 50QG1001, 50QG1101, 50QG1401, 50QG1402, 50QG1403, 50QG1404, 50QG1904, 50QG2101, 50QG2102, and 50QG2202, and the Centre for Information Services and High Performance Computing (ZIH) at the Technische UniversitĂ€t Dresden for generous allocations of computer time; ‱ the Hungarian Academy of Sciences through the LendĂŒlet Programme grants LP2014-17 and LP2018-7 and the Hungarian National Research, Development, and Innovation Office (NKFIH) through grant KKP-137523 (‘SeismoLab’); ‱ the Science Foundation Ireland (SFI) through a Royal Society - SFI University Research Fellowship (M. Fraser); ‱ the Israel Ministry of Science and Technology through grant 3-18143 and the Tel Aviv University Center for Artificial Intelligence and Data Science (TAD) through a grant; ‱ the Agenzia Spaziale Italiana (ASI) through contracts I/037/08/0, I/058/10/0, 2014-025-R.0, 2014-025-R.1.2015, and 2018-24-HH.0 to the Italian Istituto Nazionale di Astrofisica (INAF), contract 2014-049-R.0/1/2 to INAF for the Space Science Data Centre (SSDC, formerly known as the ASI Science Data Center, ASDC), contracts I/008/10/0, 2013/030/I.0, 2013-030-I.0.1-2015, and 2016-17-I.0 to the Aerospace Logistics Technology Engineering Company (ALTEC S.p.A.), INAF, and the Italian Ministry of Education, University, and Research (Ministero dell’Istruzione, dell’UniversitĂ  e della Ricerca) through the Premiale project ‘MIning The Cosmos Big Data and Innovative Italian Technology for Frontier Astrophysics and Cosmology’ (MITiC); ‱ the Netherlands Organisation for Scientific Research (NWO) through grant NWO-M-614.061.414, through a VICI grant (A. Helmi), and through a Spinoza prize (A. Helmi), and the Netherlands Research School for Astronomy (NOVA); ‱ the Polish National Science Centre through HARMONIA grant 2018/30/M/ST9/00311 and DAINA grant 2017/27/L/ST9/03221 and the Ministry of Science and Higher Education (MNiSW) through grant DIR/WK/2018/12; ‱ the Portuguese Fundação para a CiĂȘncia e a Tecnologia (FCT) through national funds, grants SFRH/BD/128840/2017 and PTDC/FIS-AST/30389/2017, and work contract DL 57/2016/CP1364/CT0006, the Fundo Europeu de Desenvolvimento Regional (FEDER) through grant POCI-01-0145-FEDER-030389 and its Programa Operacional Competitividade e Internacionalização (COMPETE2020) through grants UIDB/04434/2020 and UIDP/04434/2020, and the Strategic Programme UIDB/00099/2020 for the Centro de AstrofĂ­sica e Gravitação (CENTRA); ‱ the Slovenian Research Agency through grant P1-0188; ‱ the Spanish Ministry of Economy (MINECO/FEDER, UE), the Spanish Ministry of Science and Innovation (MICIN), the Spanish Ministry of Education, Culture, and Sports, and the Spanish Government through grants BES-2016-078499, BES-2017-083126, BES-C-2017-0085, ESP2016-80079-C2-1-R, ESP2016-80079-C2-2-R, FPU16/03827, PDC2021-121059-C22, RTI2018-095076-B-C22, and TIN2015-65316-P (‘ComputaciĂłn de Altas Prestaciones VII’), the Juan de la Cierva IncorporaciĂłn Programme (FJCI-2015-2671 and IJC2019-04862-I for F. Anders), the Severo Ochoa Centre of Excellence Programme (SEV2015-0493), and MICIN/AEI/10.13039/501100011033 (and the European Union through European Regional Development Fund ‘A way of making Europe’) through grant RTI2018-095076-B-C21, the Institute of Cosmos Sciences University of Barcelona (ICCUB, Unidad de Excelencia ‘MarĂ­a de Maeztu’) through grant CEX2019-000918-M, the University of Barcelona’s official doctoral programme for the development of an R+D+i project through an Ajuts de Personal Investigador en FormaciĂł (APIF) grant, the Spanish Virtual Observatory through project AyA2017-84089, the Galician Regional Government, Xunta de Galicia, through grants ED431B-2021/36, ED481A-2019/155, and ED481A-2021/296, the Centro de InvestigaciĂłn en TecnologĂ­as de la InformaciĂłn y las Comunicaciones (CITIC), funded by the Xunta de Galicia and the European Union (European Regional Development Fund – Galicia 2014-2020 Programme), through grant ED431G-2019/01, the Red Española de SupercomputaciĂłn (RES) computer resources at MareNostrum, the Barcelona Supercomputing Centre - Centro Nacional de SupercomputaciĂłn (BSC-CNS) through activities AECT-2017-2-0002, AECT-2017-3-0006, AECT-2018-1-0017, AECT-2018-2-0013, AECT-2018-3-0011, AECT-2019-1-0010, AECT-2019-2-0014, AECT-2019-3-0003, AECT-2020-1-0004, and DATA-2020-1-0010, the Departament d’InnovaciĂł, Universitats i Empresa de la Generalitat de Catalunya through grant 2014-SGR-1051 for project ‘Models de ProgramaciĂł i Entorns d’ExecuciĂł Parallels’ (MPEXPAR), and Ramon y Cajal Fellowship RYC2018-025968-I funded by MICIN/AEI/10.13039/501100011033 and the European Science Foundation (‘Investing in your future’); ‱ the Swedish National Space Agency (SNSA/Rymdstyrelsen); ‱ the Swiss State Secretariat for Education, Research, and Innovation through the Swiss ActivitĂ©s Nationales ComplĂ©mentaires and the Swiss National Science Foundation through an Eccellenza Professorial Fellowship (award PCEFP2_194638 for R. Anderson); ‱ the United Kingdom Particle Physics and Astronomy Research Council (PPARC), the United Kingdom Science and Technology Facilities Council (STFC), and the United Kingdom Space Agency (UKSA) through the following grants to the University of Bristol, the University of Cambridge, the University of Edinburgh, the University of Leicester, the Mullard Space Sciences Laboratory of University College London, and the United Kingdom Rutherford Appleton Laboratory (RAL): PP/D006511/1, PP/D006546/1, PP/D006570/1, ST/I000852/1, ST/J005045/1, ST/K00056X/1, ST/K000209/1, ST/K000756/1, ST/L006561/1, ST/N000595/1, ST/N000641/1, ST/N000978/1, ST/N001117/1, ST/S000089/1, ST/S000976/1, ST/S000984/1, ST/S001123/1, ST/S001948/1, ST/S001980/1, ST/S002103/1, ST/V000969/1, ST/W002469/1, ST/W002493/1, ST/W002671/1, ST/W002809/1, and EP/V520342/

    Gaia Data Release 3: the extragalactic content

    No full text
    The Gaia Galactic survey mission is designed and optimized to obtain astrometry, photometry, and spectroscopy of nearly two billion stars in our Galaxy. Yet as an all-sky multi-epoch survey, Gaia also observes several million extragalactic objects down to a magnitude of G ∌ 21 mag. Due to the nature of the Gaia onboard-selection algorithms, these are mostly point-source-like objects. Using data provided by the satellite, we have identified quasar and galaxy candidates via supervised machine learning methods, and estimate their redshifts using the low resolution BP/RP spectra. We further characterise the surface brightness profiles of host galaxies of quasars and of galaxies from pre-defined input lists. Here we give an overview of the processing of extragalactic objects, describe the data products in Gaia DR3, and analyse their properties. Two integrated tables contain the main results for a high completeness, but low purity (50−70%), set of 6.6 million candidate quasars and 4.8 million candidate galaxies. We provide queries that select purer sub-samples of these containing 1.9 million probable quasars and 2.9 million probable galaxies (both ∌95% purity). We also use high quality BP/RP spectra of 43 thousand high probability quasars over the redshift range 0.05−4.36 to construct a composite quasar spectrum spanning restframe wavelengths from 72−1000 nm.The Gaia mission and data processing have been financially supported by, in alphabetical order by country: - the Algerian Centre de Recherche en Astronomie, Astrophysique et GĂ©ophysique of Bouzareah Observatory; - the Austrian Fonds zur Förderung der wissenschaftlichen Forschung (FWF) Hertha Firnberg Programme through grants T359, P20046, and P23737; - the BELgian federal Science Policy Office (BELSPO) through various PROgramme de DĂ©veloppement d’ExpĂ©riences scientifiques (PRODEX) grants and the Polish Academy of Sciences – Fonds Wetenschappelijk Onderzoek through grant VS.091.16N, and the Fonds de la Recherche Scientifique (FNRS), and the Research Council of Katholieke Universiteit (KU) Leuven through grant C16/18/005 (Pushing AsteRoseismology to the next level with TESS, GaiA, and the Sloan DIgital Sky SurvEy – PARADISE); - the Brazil-France exchange programmes Fundação de Amparo Ă  Pesquisa do Estado de SĂŁo Paulo (FAPESP) and Coordenação de Aperfeicoamento de Pessoal de NĂ­vel Superior (CAPES) – ComitĂ© Français d’Evaluation de la CoopĂ©ration Universitaire et Scientifique avec le BrĂ©sil (COFECUB); - the Chilean Agencia Nacional de InvestigaciĂłn y Desarrollo (ANID) through Fondo Nacional de Desarrollo CientĂ­fico y TecnolĂłgico (FONDECYT) Regular Project 1210992 (L. Chemin); - the National Natural Science Foundation of China (NSFC) through grants 11573054, 11703065, and 12173069, the China Scholarship Council through grant 201806040200, and the Natural Science Foundation of Shanghai through grant 21ZR1474100; - the Tenure Track Pilot Programme of the Croatian Science Foundation and the École Polytechnique FĂ©dĂ©rale de Lausanne and the project TTP-2018-07-1171 ‘Mining the Variable Sky’, with the funds of the Croatian-Swiss Research Programme; - the Czech-Republic Ministry of Education, Youth, and Sports through grant LG 15010 and INTER-EXCELLENCE grant LTAUSA18093, and the Czech Space Office through ESA PECS contract 98058; - the Danish Ministry of Science; - the Estonian Ministry of Education and Research through grant IUT40-1; - the European Commission’s Sixth Framework Programme through the European Leadership in Space Astrometry (ELSA) Marie Curie Research Training Network (MRTN-CT-2006-033481), through Marie Curie project PIOF-GA-2009-255267 (Space AsteroSeismology & RR Lyrae stars, SAS-RRL), and through a Marie Curie Transfer-of-Knowledge (ToK) fellowship (MTKD-CT-2004-014188); the European Commission’s Seventh Framework Programme through grant FP7-606740 (FP7-SPACE-2013-1) for the Gaia European Network for Improved data User Services (GENIUS) and through grant 264895 for the Gaia Research for European Astronomy Training (GREAT-ITN) network; - the European Cooperation in Science and Technology (COST) through COST Action CA18104 ‘Revealing the Milky Way with Gaia (MW-Gaia)’; - the European Research Council (ERC) through grants 320360, 647208, and 834148 and through the European Union’s Horizon 2020 research and innovation and excellent science programmes through Marie SkƂodowska-Curie grant 745617 (Our Galaxy at full HD – Gal-HD) and 895174 (The build-up and fate of self-gravitating systems in the Universe) as well as grants 687378 (Small Bodies: Near and Far), 682115 (Using the Magellanic Clouds to Understand the Interaction of Galaxies), 695099 (A sub-percent distance scale from binaries and Cepheids – CepBin), 716155 (Structured ACCREtion Disks – SACCRED), 951549 (Sub-percent calibration of the extragalactic distance scale in the era of big surveys – UniverScale), and 101004214 (Innovative Scientific Data Exploration and Exploitation Applications for Space Sciences – EXPLORE); - the European Science Foundation (ESF), in the framework of the Gaia Research for European Astronomy Training Research Network Programme (GREAT-ESF); - the European Space Agency (ESA) in the framework of the Gaia project, through the Plan for European Cooperating States (PECS) programme through contracts C98090 and 4000106398/12/NL/KML for Hungary, through contract 4000115263/15/NL/IB for Germany, and through PROgramme de DĂ©veloppement d’ExpĂ©riences scientifiques (PRODEX) grant 4000127986 for Slovenia; - the Academy of Finland through grants 299543, 307157, 325805, 328654, 336546, and 345115 and the Magnus Ehrnrooth Foundation; - the French Centre National d’Études Spatiales (CNES), the Agence Nationale de la Recherche (ANR) through grant ANR-10-IDEX-0001-02 for the ‘Investissements d’avenir’ programme, through grant ANR-15-CE31-0007 for project ‘Modelling the Milky Way in the Gaia era’ (MOD4Gaia), through grant ANR-14-CE33-0014-01 for project ‘The Milky Way disc formation in the Gaia era’ (ARCHEOGAL), through grant ANR-15-CE31-0012-01 for project ‘Unlocking the potential of Cepheids as primary distance calibrators’ (UnlockCepheids), through grant ANR-19-CE31-0017 for project ‘Secular evolution of galxies’ (SEGAL), and through grant ANR-18-CE31-0006 for project ‘Galactic Dark Matter’ (GaDaMa), the Centre National de la Recherche Scientifique (CNRS) and its SNO Gaia of the Institut des Sciences de l’Univers (INSU), its Programmes Nationaux: Cosmologie et Galaxies (PNCG), Gravitation RĂ©fĂ©rences Astronomie MĂ©trologie (PNGRAM), PlanĂ©tologie (PNP), Physique et Chimie du Milieu Interstellaire (PCMI), and Physique Stellaire (PNPS), the ‘Action FĂ©dĂ©ratrice Gaia’ of the Observatoire de Paris, the RĂ©gion de Franche-ComtĂ©, the Institut National Polytechnique (INP) and the Institut National de Physique nuclĂ©aire et de Physique des Particules (IN2P3) co-funded by CNES; - the German Aerospace Agency (Deutsches Zentrum fĂŒr Luft- und Raumfahrt e.V., DLR) through grants 50QG0501, 50QG0601, 50QG0602, 50QG0701, 50QG0901, 50QG1001, 50QG1101, 50QG1401, 50QG1402, 50QG1403, 50QG1404, 50QG1904, 50QG2101, 50QG2102, and 50QG2202, and the Centre for Information Services and High Performance Computing (ZIH) at the Technische UniversitĂ€t Dresden for generous allocations of computer time; - the Hungarian Academy of Sciences through the LendĂŒlet Programme grants LP2014-17 and LP2018-7 and the Hungarian National Research, Development, and Innovation Office (NKFIH) through grant KKP-137523 (‘SeismoLab’); - the Science Foundation Ireland (SFI) through a Royal Society – SFI University Research Fellowship (M. Fraser); - the Israel Ministry of Science and Technology through grant 3-18143 and the Tel Aviv University Center for Artificial Intelligence and Data Science (TAD) through a grant; - the Agenzia Spaziale Italiana (ASI) through contracts I/037/08/0, I/058/10/0, 2014-025-R.0, 2014-025-R.1.2015, and 2018-24-HH.0 to the Italian Istituto Nazionale di Astrofisica (INAF), contract 2014-049-R.0/1/2 to INAF for the Space Science Data Centre (SSDC, formerly known as the ASI Science Data Center, ASDC), contracts I/008/10/0, 2013/030/I.0, 2013-030-I.0.1-2015, and 2016-17-I.0 to the Aerospace Logistics Technology Engineering Company (ALTEC S.p.A.), INAF, and the Italian Ministry of Education, University, and Research (Ministero dell’Istruzione, dell’UniversitĂ  e della Ricerca) through the Premiale project ‘MIning The Cosmos Big Data and Innovative Italian Technology for Frontier Astrophysics and Cosmology’ (MITiC); - the Netherlands Organisation for Scientific Research (NWO) through grant NWO-M-614.061.414, through a VICI grant (A. Helmi), and through a Spinoza prize (A. Helmi), and the Netherlands Research School for Astronomy (NOVA); - the Polish National Science Centre through HARMONIA grant 2018/30/M/ST9/00311 and DAINA grant 2017/27/L/ST9/03221 and the Ministry of Science and Higher Education (MNiSW) through grant DIR/WK/2018/12; - the Portuguese Fundação para a CiĂȘncia e a Tecnologia (FCT) through national funds, grants SFRH/BD/128840/2017 and PTDC/FIS-AST/30389/2017, and work contract DL 57/2016/CP1364/CT0006, the Fundo Europeu de Desenvolvimento Regional (FEDER) through grant POCI-01-0145-FEDER-030389 and its Programa Operacional Competitividade e Internacionalização (COMPETE2020) through grants UIDB/04434/2020 and UIDP/04434/2020, and the Strategic Programme UIDB/00099/2020 for the Centro de AstrofĂ­sica e Gravitação (CENTRA); - the Slovenian Research Agency through grant P1-0188; - the Spanish Ministry of Economy (MINECO/FEDER, UE), the Spanish Ministry of Science and Innovation (MICIN), the Spanish Ministry of Education, Culture, and Sports, and the Spanish Government through grants BES-2016-078499, BES-2017-083126, BES-C-2017-0085, ESP2016-80079-C2-1-R, ESP2016-80079-C2-2-R, FPU16/03827, PDC2021-121059-C22, RTI2018-095076-B-C22, and TIN2015-65316-P (‘ComputaciĂłn de Altas Prestaciones VII’), the Juan de la Cierva IncorporaciĂłn Programme (FJCI-2015-2671 and IJC2019-04862-I for F. Anders), the Severo Ochoa Centre of Excellence Programme (SEV2015-0493), and MICIN/AEI/10.13039/501100011033 (and the European Union through European Regional Development Fund ‘A way of making Europe’) through grant RTI2018-095076-B-C21, the Institute of Cosmos Sciences University of Barcelona (ICCUB, Unidad de Excelencia ‘MarĂ­a de Maeztu’) through grant CEX2019-000918-M, the University of Barcelona’s official doctoral programme for the development of an R+D+i project through an Ajuts de Personal Investigador en FormaciĂł (APIF) grant, the Spanish Virtual Observatory through project AyA2017-84089, the Galician Regional Government, Xunta de Galicia, through grants ED431B-2021/36, ED481A-2019/155, and ED481A-2021/296, the Centro de InvestigaciĂłn en TecnologĂ­as de la InformaciĂłn y las Comunicaciones (CITIC), funded by the Xunta de Galicia and the European Union (European Regional Development Fund – Galicia 2014-2020 Programme), through grant ED431G-2019/01, the Red Española de SupercomputaciĂłn (RES) computer resources at MareNostrum, the Barcelona Supercomputing Centre – Centro Nacional de SupercomputaciĂłn (BSC-CNS) through activities AECT-2017-2-0002, AECT-2017-3-0006, AECT-2018-1-0017, AECT-2018-2-0013, AECT-2018-3-0011, AECT-2019-1-0010, AECT-2019-2-0014, AECT-2019-3-0003, AECT-2020-1-0004, and DATA-2020-1-0010, the Departament d’InnovaciĂł, Universitats i Empresa de la Generalitat de Catalunya through grant 2014-SGR-1051 for project ‘Models de ProgramaciĂł i Entorns d’ExecuciĂł Parallels’ (MPEXPAR), and Ramon y Cajal Fellowship RYC2018-025968-I funded by MICIN/AEI/10.13039/501100011033 and the European Science Foundation (‘Investing in your future’); - the Swedish National Space Agency (SNSA/Rymdstyrelsen); the Swiss State Secretariat for Education, Research, and Innovation through the Swiss ActivitĂ©s Nationales ComplĂ©mentaires and the Swiss National Science Foundation through an Eccellenza Professorial Fellowship (award PCEFP2_194638 for R. Anderson); - the United Kingdom Particle Physics and Astronomy Research Council (PPARC), the United Kingdom Science and Technology Facilities Council (STFC), and the United Kingdom Space Agency (UKSA) through the following grants to the University of Bristol, the University of Cambridge, the University of Edinburgh, the University of Leicester, the Mullard Space Sciences Laboratory of University College London, and the United Kingdom Rutherford Appleton Laboratory (RAL): PP/D006511/1, PP/D006546/1, PP/D006570/1, ST/I000852/1, ST/J005045/1, ST/K00056X/1, ST/K000209/1, ST/K000756/1, ST/L006561/1, ST/N000595/1, ST/N000641/1, ST/N000978/1, ST/N001117/1, ST/S000089/1, ST/S000976/1, ST/S000984/1, ST/S001123/1, ST/S001948/1, ST/S001980/1, ST/S002103/1, ST/V000969/1, ST/W002469/1, ST/W002493/1, ST/W002671/1, ST/W002809/1, and EP/V520342/1. We made use of the following tools in the preparation of this paper: (SIMBAD, Wenger et al. 2000) and VizieR (Ochsenbein et al. 2000) operated at (CDS) Strasbourg; NASA ADS; TOPCAT (Taylor 2005); Matplotlib (Hunter 2007); IPython (PĂ©rez & Granger 2007); Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration 2018); R (R Core Team 2020); HEALpixel (GĂłrski et al. 2005). Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. SDSS-IV acknowledges support and resources from the Center for High Performance Computing at the University of Utah. The SDSS website is www.sdss.org. SDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, Center for Astrophysics | Harvard & Smithsonian, the Chilean Participation Group, the French Participation Group, Instituto de AstrofĂ­sica de Canarias, The Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo, the Korean Participation Group, Lawrence Berkeley National Laboratory, Leibniz Institut fĂŒr Astrophysik Potsdam (AIP), Max-Planck-Institut fĂŒr Astronomie (MPIA Heidelberg), Max-Planck-Institut fĂŒr Astrophysik (MPA Garching), Max-Planck-Institut fĂŒr Extraterrestrische Physik (MPE), National Astronomical Observatories of China, New Mexico State University, New York University, University of Notre Dame, ObservatĂĄrio Nacional/MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional AutĂłnoma de MĂ©xico, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University, and Yale University

    Gaia Data Release 3: analysis of the Gaia BP/RP spectra using the General Stellar Parameterizer from Photometry

    No full text
    Context. The astrophysical characterisation of sources is among the major new data products in the third Gaia Data Release (DR3). In particular, there are stellar parameters for 471 million sources estimated from low-resolution BP/RP spectra. Aims. We present the General Stellar Parameterizer from Photometry (GSP-Phot), which is part of the astrophysical parameters inference system (Apsis). GSP-Phot is designed to produce a homogeneous catalogue of parameters for hundreds of millions of single non-variable stars based on their astrometry, photometry, and low-resolution BP/RP spectra. These parameters are effective temperature, surface gravity, metallicity, absolute MG magnitude, radius, distance, and extinction for each star. Methods. GSP-Phot uses a Bayesian forward-modelling approach to simultaneously fit the BP/RP spectrum, parallax, and apparent G magnitude. A major design feature of GSP-Phot is the use of the apparent flux levels of BP/RP spectra to derive, in combination with isochrone models, tight observational constraints on radii and distances. We carefully validate the uncertainty estimates by exploiting repeat Gaia observations of the same source. Results. The data release includes GSP-Phot results for 471 million sources with G   20), mostly within 2 kpc. Metallicity estimates exhibit substantial biases compared to literature values and are only useful at a qualitative level. However, we provide an empirical calibration of our metallicity estimates that largely removes these biases. Extinctions A0 and ABP show typical differences from reference values of 0.07–0.09 mag. MCMC samples of the parameters are also available for 95% of the sources. Conclusions. GSP-Phot provides a homogeneous catalogue of stellar parameters, distances, and extinctions that can be used for various purposes, such as sample selections (OB stars, red giants, solar analogues etc.). In the context of asteroseismology or ground-based interferometry, where targets are usually bright and have good parallax measurements, GSP-Phot results should be particularly useful for combined analysis or target selection.This work presents results from the European Space Agency (ESA) space mission Gaia. Gaia data are being processed by the Gaia Data Processing and Analysis Consortium (DPAC). Funding for the DPAC is provided by national institutions, in particular the institutions participating in the Gaia MultiLateral Agreement (MLA). The Gaia mission website is https://www.cosmos.esa.int/gaia.The Gaia archive website is https://archives.esac.esa.int/gaia. The Gaia mission and data processing have financially been supported by, in alphabetical order by country: ‱ the Algerian Centre de Recherche en Astronomie, Astrophysique et GĂ©ophysique of Bouzareah Observatory; ‱ the Austrian Fonds zur Förderung der wissenschaftlichen Forschung (FWF) Hertha Firnberg Programme through grants T359, P20046, and P23737; ‱ the BELgian federal Science Policy Office (BELSPO) through various PROgramme de DĂ©veloppement d’ExpĂ©riences scientifiques (PRODEX) grants and the Polish Academy of Sciences - Fonds Wetenschappelijk Onderzoek through grant VS.091.16N, and the Fonds de la Recherche Scientifique (FNRS), and the Research Council of Katholieke Universiteit (KU) Leuven through grant C16/18/005 (Pushing AsteRoseismology to the next level with TESS, GaiA, and the Sloan DIgital Sky SurvEy – PARADISE); ‱ the Brazil-France exchange programmes Fundação de Amparo Ă  Pesquisa do Estado de SĂŁo Paulo (FAPESP) and Coordenação de Aperfeicoamento de Pessoal de NĂ­vel Superior (CAPES) - ComitĂ© Français d’Evaluation de la CoopĂ©ration Universitaire et Scientifique avec le BrĂ©sil (COFECUB); ‱ the Chilean Agencia Nacional de InvestigaciĂłn y Desarrollo (ANID) through Fondo Nacional de Desarrollo CientĂ­fico y TecnolĂłgico (FONDECYT) Regular Project 1210992 (L. Chemin); ‱ the National Natural Science Foundation of China (NSFC) through grants 11573054, 11703065, and 12173069, the China Scholarship Council through grant 201806040200, and the Natural Science Foundation of Shanghai through grant 21ZR1474100; ‱ the Tenure Track Pilot Programme of the Croatian Science Foundation and the École Polytechnique FĂ©dĂ©rale de Lausanne and the project TTP-2018-07-1171 ‘Mining the Variable Sky’, with the funds of the Croatian-Swiss Research Programme; ‱ the Czech-Republic Ministry of Education, Youth, and Sports through grant LG 15010 and INTER-EXCELLENCE grant LTAUSA18093, and the Czech Space Office through ESA PECS contract 98058; ‱ the Danish Ministry of Science; ‱ the Estonian Ministry of Education and Research through grant IUT40-1; ‱ the European Commission’s Sixth Framework Programme through the European Leadership in Space Astrometry (https://www.cosmos.esa.int/web/gaia/elsa-rtn-programme) Marie Curie Research Training Network (MRTN-CT-2006-033481), through Marie Curie project PIOF-GA-2009-255267 (Space AsteroSeismology & RR Lyrae stars, SAS-RRL), and through a Marie Curie Transfer-of-Knowledge (ToK) fellowship (MTKD-CT-2004-014188); the European Commission’s Seventh Framework Programme through grant FP7-606740 (FP7-SPACE-2013-1) for the Gaia European Network for Improved data User Services (https://gaia.ub.edu/twiki/do/view/GENIUS/) and through grant 264895 for the Gaia Research for European Astronomy Training (https://www.cosmos.esa.int/web/gaia/great-programme) network; ‱ the European Cooperation in Science and Technology (COST) through COST Action CA18104 ‘Revealing the Milky Way with Gaia (MW-Gaia)’; ‱ the European Research Council (ERC) through grants 320360, 647208, and 834148 and through the European Union’s Horizon 2020 research and innovation and excellent science programmes through Marie SkƂodowska-Curie grant 745617 (Our Galaxy at full HD – Gal-HD) and 895174 (The build-up and fate of self-gravitating systems in the Universe) as well as grants 687378 (Small Bodies: Near and Far), 682115 (Using the Magellanic Clouds to Understand the Interaction of Galaxies), 695099 (A sub-percent distance scale from binaries and Cepheids – CepBin), 716155 (Structured ACCREtion Disks – SACCRED), 951549 (Sub-percent calibration of the extragalactic distance scale in the era of big surveys – UniverScale), and 101004214 (Innovative Scientific Data Exploration and Exploitation Applications for Space Sciences – EXPLORE); ‱ the European Science Foundation (ESF), in the framework of the Gaia Research for European Astronomy Training Research Network Programme (https://www.cosmos.esa.int/web/gaia/great-programme); ‱ the European Space Agency (ESA) in the framework of the Gaia project, through the Plan for European Cooperating States (PECS) programme through contracts C98090 and 4000106398/12/NL/KML for Hungary, through contract 4000115263/15/NL/IB for Germany, and through PROgramme de DĂ©veloppement d’ExpĂ©riences scientifiques (PRODEX) grant 4000127986 for Slovenia; ‱ the Academy of Finland through grants 299543, 307157, 325805, 328654, 336546, and 345115 and the Magnus Ehrnrooth Foundation; ‱ the French Centre National d’Études Spatiales (CNES), the Agence Nationale de la Recherche (ANR) through grant ANR-10-IDEX-0001-02 for the ‘Investissements d’avenir’ programme, through grant ANR-15-CE31-0007 for project ‘Modelling the Milky Way in the Gaia era’ (MOD4Gaia), through grant ANR-14-CE33-0014-01 for project ‘The Milky Way disc formation in the Gaia era’ (ARCHEOGAL), through grant ANR-15-CE31-0012-01 for project ‘Unlocking the potential of Cepheids as primary distance calibrators’ (UnlockCepheids), through grant ANR-19-CE31-0017 for project ‘Secular evolution of galxies’ (SEGAL), and through grant ANR-18-CE31-0006 for project ‘Galactic Dark Matter’ (GaDaMa), the Centre National de la Recherche Scientifique (CNRS) and its SNO Gaia of the Institut des Sciences de l’Univers (INSU), its Programmes Nationaux: Cosmologie et Galaxies (PNCG), Gravitation RĂ©fĂ©rences Astronomie MĂ©trologie (PNGRAM), PlanĂ©tologie (PNP), Physique et Chimie du Milieu Interstellaire (PCMI), and Physique Stellaire (PNPS), the ‘Action FĂ©dĂ©ratrice Gaia’ of the Observatoire de Paris, the RĂ©gion de Franche-ComtĂ©, the Institut National Polytechnique (INP) and the Institut National de Physique nuclĂ©aire et de Physique des Particules (IN2P3) co-funded by CNES; ‱ the German Aerospace Agency (Deutsches Zentrum fĂŒr Luft- und Raumfahrt e.V., DLR) through grants 50QG0501, 50QG0601, 50QG0602, 50QG0701, 50QG0901, 50QG1001, 50QG1101, 50QG1401, 50QG1402, 50QG1403, 50QG1404, 50QG1904, 50QG2101, 50QG2102, and 50QG2202, and the Centre for Information Services and High Performance Computing (ZIH) at the Technische UniversitĂ€t Dresden for generous allocations of computer time; ‱ the Hungarian Academy of Sciences through the LendĂŒlet Programme grants LP2014-17 and LP2018-7 and the Hungarian National Research, Development, and Innovation Office (NKFIH) through grant KKP-137523 (‘SeismoLab’); ‱ the Science Foundation Ireland (SFI) through a Royal Society - SFI University Research Fellowship (M. Fraser); ‱ the Israel Ministry of Science and Technology through grant 3-18143 and the Tel Aviv University Center for Artificial Intelligence and Data Science (TAD) through a grant; ‱ the Agenzia Spaziale Italiana (ASI) through contracts I/037/08/0, I/058/10/0, 2014-025-R.0, 2014-025-R.1.2015, and 2018-24-HH.0 to the Italian Istituto Nazionale di Astrofisica (INAF), contract 2014-049-R.0/1/2 to INAF for the Space Science Data Centre (SSDC, formerly known as the ASI Science Data Center, ASDC), contracts I/008/10/0, 2013/030/I.0, 2013-030-I.0.1-2015, and 2016-17-I.0 to the Aerospace Logistics Technology Engineering Company (ALTEC S.p.A.), INAF, and the Italian Ministry of Education, University, and Research (Ministero dell’Istruzione, dell’UniversitĂ  e della Ricerca) through the Premiale project ‘MIning The Cosmos Big Data and Innovative Italian Technology for Frontier Astrophysics and Cosmology’ (MITiC); ‱ the Netherlands Organisation for Scientific Research (NWO) through grant NWO-M-614.061.414, through a VICI grant (A. Helmi), and through a Spinoza prize (A. Helmi), and the Netherlands Research School for Astronomy (NOVA); ‱ the Polish National Science Centre through HARMONIA grant 2018/30/M/ST9/00311 and DAINA grant 2017/27/L/ST9/03221 and the Ministry of Science and Higher Education (MNiSW) through grant DIR/WK/2018/12; ‱ the Portuguese Fundação para a CiĂȘncia e a Tecnologia (FCT) through national funds, grants SFRH/BD/128840/2017 and PTDC/FIS-AST/30389/2017, and work contract DL 57/2016/CP1364/CT0006, the Fundo Europeu de Desenvolvimento Regional (FEDER) through grant POCI-01-0145-FEDER-030389 and its Programa Operacional Competitividade e Internacionalização (COMPETE2020) through grants UIDB/04434/2020 and UIDP/04434/2020, and the Strategic Programme UIDB/00099/2020 for the Centro de AstrofĂ­sica e Gravitação (CENTRA); ‱ the Slovenian Research Agency through grant P1-0188; ‱ the Spanish Ministry of Economy (MINECO/FEDER, UE), the Spanish Ministry of Science and Innovation (MICIN), the Spanish Ministry of Education, Culture, and Sports, and the Spanish Government through grants BES-2016-078499, BES-2017-083126, BES-C-2017-0085, ESP2016-80079-C2-1-R, ESP2016-80079-C2-2-R, FPU16/03827, PDC2021-121059-C22, RTI2018-095076-B-C22, and TIN2015-65316-P (‘ComputaciĂłn de Altas Prestaciones VII’), the Juan de la Cierva IncorporaciĂłn Programme (FJCI-2015-2671 and IJC2019-04862-I for F. Anders), the Severo Ochoa Centre of Excellence Programme (SEV2015-0493), and MICIN/AEI/10.13039/501100011033 (and the European Union through European Regional Development Fund ‘A way of making Europe’) through grant RTI2018-095076-B-C21, the Institute of Cosmos Sciences University of Barcelona (ICCUB, Unidad de Excelencia ‘MarĂ­a de Maeztu’) through grant CEX2019-000918-M, the University of Barcelona’s official doctoral programme for the development of an R+D+i project through an Ajuts de Personal Investigador en FormaciĂł (APIF) grant, the Spanish Virtual Observatory through project AyA2017-84089, the Galician Regional Government, Xunta de Galicia, through grants ED431B-2021/36, ED481A-2019/155, and ED481A-2021/296, the Centro de InvestigaciĂłn en TecnologĂ­as de la InformaciĂłn y las Comunicaciones (CITIC), funded by the Xunta de Galicia and the European Union (European Regional Development Fund – Galicia 2014-2020 Programme), through grant ED431G-2019/01, the Red Española de SupercomputaciĂłn (RES) computer resources at MareNostrum, the Barcelona Supercomputing Centre - Centro Nacional de SupercomputaciĂłn (BSC-CNS) through activities AECT-2017-2-0002, AECT-2017-3-0006, AECT-2018-1-0017, AECT-2018-2-0013, AECT-2018-3-0011, AECT-2019-1-0010, AECT-2019-2-0014, AECT-2019-3-0003, AECT-2020-1-0004, and DATA-2020-1-0010, the Departament d’InnovaciĂł, Universitats i Empresa de la Generalitat de Catalunya through grant 2014-SGR-1051 for project ‘Models de ProgramaciĂł i Entorns d’ExecuciĂł Parallels’ (MPEXPAR), and Ramon y Cajal Fellowship RYC2018-025968-I funded by MICIN/AEI/10.13039/501100011033 and the European Science Foundation (‘Investing in your future’); ‱ the Swedish National Space Agency (SNSA/Rymdstyrelsen); ‱ the Swiss State Secretariat for Education, Research, and Innovation through the Swiss ActivitĂ©s Nationales ComplĂ©mentaires and the Swiss National Science Foundation through an Eccellenza Professorial Fellowship (award PCEFP2_194638 for R. Anderson); ‱ the United Kingdom Particle Physics and Astronomy Research Council (PPARC), the United Kingdom Science and Technology Facilities Council (STFC), and the United Kingdom Space Agency (UKSA) through the following grants to the University of Bristol, the University of Cambridge, the University of Edinburgh, the University of Leicester, the Mullard Space Sciences Laboratory of University College London, and the United Kingdom Rutherford Appleton Laboratory (RAL): PP/D006511/1, PP/D006546/1, PP/D006570/1, ST/I000852/1, ST/J005045/1, ST/K00056X/1, ST/K000209/1, ST/K000756/1, ST/L006561/1, ST/N000595/1, ST/N000641/1, ST/N000978/1, ST/N001117/1, ST/S000089/1, ST/S000976/1, ST/S000984/1, ST/S001123/1, ST/S001948/1, ST/S001980/1, ST/S002103/1, ST/V000969/1, ST/W002469/1, ST/W002493/1, ST/W002671/1, ST/W002809/1, and EP/V520342/1

    Gaia Data Release 3: stellar chromospheric activity and mass accretion from Ca II IRT observed by the Radial Velocity Spectrometer

    No full text
    Context: The Gaia Radial Velocity Spectrometer (RVS) provides the unique opportunity of a spectroscopic analysis of millions of stars at medium resolution (λ/Δλ ∌ 11 500) in the near-infrared (845−872 nm). This wavelength range includes the Ca II infrared triplet (IRT) at 850.03, 854.44, and 866.45 nm, which is a good indicator of magnetic activity in the chromosphere of late–type stars. Aims: Here we present the method devised for inferring the Gaia stellar activity index from the analysis of the Ca II IRT in the RVS spectrum, together with its scientific validation. Methods: The Gaia stellar activity index is derived from the Ca II IRT excess equivalent width with respect to a reference spectrum, taking the projected rotational velocity (vsini) into account. We performed scientific validation of the Gaia stellar activity index by deriving a Râ€ČIRT index, which is largely independent of the photospheric parameters, and considering the correlation with the Râ€ČHK index for a sample of stars. A sample of well-studied pre-main-sequence (PMS) stars is considered to identify the regime in which the Gaia stellar activity index may be affected by mass accretion. The position of these stars in the colour–magnitude diagram and the correlation with the amplitude of the photometric rotational modulation is also scrutinised. Results: Gaia DR3 contains a stellar activity index derived from the Ca II IRT for some 2 × 106 stars in the Galaxy. This represents a ‘gold mine’ for studies on stellar magnetic activity and mass accretion in the solar vicinity. Three regimes of the chromospheric stellar activity are identified, confirming suggestions made by previous authors based on much smaller Râ€ČHK datasets. The highest stellar activity regime is associated with PMS stars and RS CVn systems, in which activity is enhanced by tidal interaction. Some evidence of a bimodal distribution in main sequence (MS) stars with Teff ≳ 5000 K is also found, which defines the two other regimes, without a clear gap in between. Stars with 3500 K â‰Č Teff â‰Č 5000 K are found to be either very active PMS stars or active MS stars with a unimodal distribution in chromospheric activity. A dramatic change in the activity distribution is found for Teff â‰Č 3500 K, with a dominance of low activity stars close to the transition between partially- and fully convective stars and a rise in activity down into the fully convective regime.This work presents results from the European Space Agency (ESA) space mission Gaia. Gaia data are processed by the Gaia Data Processing and Analysis Consortium (DPAC). Funding for the DPAC is provided by national institutions, in particular the institutions participating in the Gaia MultiLateral Agreement (MLA). The Gaia mission website is https://www.cosmos.esa.int/gaia. The Gaia archive website is https://archives.esac.esa.int/gaia. The Gaia mission and data processing have financially been supported by, in alphabetical order by country: ‱ the Algerian Centre de Recherche en Astronomie, Astrophysique et GĂ©ophysique of Bouzareah Observatory; ‱ the Austrian Fonds zur Förderung der wissenschaftlichen Forschung (FWF) Hertha Firnberg Programme through grants T359, P20046, and P23737; ‱ the BELgian federal Science Policy Office (BELSPO) through various PROgramme de DĂ©veloppement d’ExpĂ©riences scientifiques (PRODEX) grants and the Polish Academy of Sciences – Fonds Wetenschappelijk Onderzoek through grant VS.091.16N, and the Fonds de la Recherche Scientifique (FNRS), and the Research Council of Katholieke Universiteit (KU) Leuven through grant C16/18/005 (Pushing AsteRoseismology to the next level with TESS, GaiA, and the Sloan DIgital Sky SurvEy – PARADISE); ‱ the Brazil-France exchange programmes Fundação de Amparo Ă  Pesquisa do Estado de SĂŁo Paulo (FAPESP) and Coordenação de Aperfeicoamento de Pessoal de NĂ­vel Superior (CAPES) – ComitĂ© Français d’Evaluation de la CoopĂ©ration Universitaire et Scientifique avec le BrĂ©sil (COFECUB); ‱ the Chilean Agencia Nacional de InvestigaciĂłn y Desarrollo (ANID) through Fondo Nacional de Desarrollo CientĂ­fico y TecnolĂłgico (FONDECYT) Regular Project 1210992 (L. Chemin); ‱ the National Natural Science Foundation of China (NSFC) through grants 11573054, 11703065, and 12173069, the China Scholarship Council through grant 201806040200, and the Natural Science Foundation of Shanghai through grant 21ZR1474100; ‱ the Tenure Track Pilot Programme of the Croatian Science Foundation and the École Polytechnique FĂ©dĂ©rale de Lausanne and the project TTP-2018-07-1171 ‘Mining the Variable Sky’, with the funds of the Croatian-Swiss Research Programme; ‱ the Czech-Republic Ministry of Education, Youth, and Sports through grant LG 15010 and INTER-EXCELLENCE grant LTAUSA18093, and the Czech Space Office through ESA PECS contract 98058; ‱ the Danish Ministry of Science; ‱ the Estonian Ministry of Education and Research through grant IUT40-1; ‱ the European Commission’s Sixth Framework Programme through the European Leadership in Space Astrometry (https://www.cosmos.esa.int/web/gaia/elsa-rtn-programme) Marie Curie Research Training Network (MRTN-CT-2006-033481), through Marie Curie project PIOF-GA-2009-255267 (Space AsteroSeismology & RR Lyrae stars, SAS-RRL), and through a Marie Curie Transfer-of-Knowledge (ToK) fellowship (MTKD-CT-2004-014188); the European Commission’s Seventh Framework Programme through grant FP7-606740 (FP7-SPACE-2013-1) for the Gaia European Network for Improved data User Services (https://gaia.ub.edu/twiki/do/view/GENIUS/) and through grant 264895 for the Gaia Research for European Astronomy Training (https://www.cosmos.esa.int/web/gaia/great-programme) network; ‱ the European Cooperation in Science and Technology (COST) through COST Action CA18104 ‘Revealing the Milky Way with Gaia (MW-Gaia)’; ‱ the European Research Council (ERC) through grants 320360, 647208, and 834148 and through the European Union’s Horizon 2020 research and innovation and excellent science programmes through Marie SkƂodowska-Curie grant 745617 (Our Galaxy at full HD – Gal-HD) and 895174 (The build-up and fate of self-gravitating systems in the Universe) as well as grants 687378 (Small Bodies: Near and Far), 682115 (Using the Magellanic Clouds to Understand the Interaction of Galaxies), 695099 (A sub-percent distance scale from binaries and Cepheids – CepBin), 716155 (Structured ACCREtion Disks – SACCRED), 951549 (Sub-percent calibration of the extragalactic distance scale in the era of big surveys – UniverScale), and 101004214 (Innovative Scientific Data Exploration and Exploitation Applications for Space Sciences – EXPLORE); ‱ the European Science Foundation (ESF), in the framework of the Gaia Research for European Astronomy Training Research Network Programme (https://www.cosmos.esa.int/web/gaia/great-programme); ‱ the European Space Agency (ESA) in the framework of the Gaia project, through the Plan for European Cooperating States (PECS) programme through contracts C98090 and 4000106398/12/NL/KML for Hungary, through contract 4000115263/15/NL/IB for Germany, and through PROgramme de DĂ©veloppement d’ExpĂ©riences scientifiques (PRODEX) grant 4000127986 for Slovenia; ‱ the Academy of Finland through grants 299543, 307157, 325805, 328654, 336546, and 345115 and the Magnus Ehrnrooth Foundation; ‱ the French Centre National d’Études Spatiales (CNES), the Agence Nationale de la Recherche (ANR) through grant ANR-10-IDEX-0001-02 for the ‘Investissements d’avenir’ programme, through grant ANR-15-CE31-0007 for project ‘Modelling the Milky Way in the Gaia era’ (MOD4Gaia), through grant ANR-14-CE33-0014-01 for project ‘The Milky Way disc formation in the Gaia era’ (ARCHEOGAL), through grant ANR-15-CE31-0012-01 for project ‘Unlocking the potential of Cepheids as primary distance calibrators’ (UnlockCepheids), through grant ANR-19-CE31-0017 for project ‘Secular evolution of galxies’ (SEGAL), and through grant ANR-18-CE31-0006 for project ‘Galactic Dark Matter’ (GaDaMa), the Centre National de la Recherche Scientifique (CNRS) and its SNO Gaia of the Institut des Sciences de l’Univers (INSU), its Programmes Nationaux: Cosmologie et Galaxies (PNCG), Gravitation RĂ©fĂ©rences Astronomie MĂ©trologie (PNGRAM), PlanĂ©tologie (PNP), Physique et Chimie du Milieu Interstellaire (PCMI), and Physique Stellaire (PNPS), the ‘Action FĂ©dĂ©ratrice Gaia’ of the Observatoire de Paris, the RĂ©gion de Franche-ComtĂ©, the Institut National Polytechnique (INP) and the Institut National de Physique nuclĂ©aire et de Physique des Particules (IN2P3) co-funded by CNES; ‱ the German Aerospace Agency (Deutsches Zentrum fĂŒr Luft- und Raumfahrt e.V., DLR) through grants 50QG0501, 50QG0601, 50QG0602, 50QG0701, 50QG0901, 50QG1001, 50QG1101, 50QG1401, 50QG1402, 50QG1403, 50QG1404, 50QG1904, 50QG2101, 50QG2102, and 50QG2202, and the Centre for Information Services and High Performance Computing (ZIH) at the Technische UniversitĂ€t Dresden for generous allocations of computer time; ‱ the Hungarian Academy of Sciences through the LendĂŒlet Programme grants LP2014-17 and LP2018-7 and the Hungarian National Research, Development, and Innovation Office (NKFIH) through grant KKP-137523 (‘SeismoLab’); ‱ the Science Foundation Ireland (SFI) through a Royal Society – SFI University Research Fellowship (M. Fraser); ‱ the Israel Ministry of Science and Technology through grant 3-18143 and the Tel Aviv University Center for Artificial Intelligence and Data Science (TAD) through a grant; ‱ the Agenzia Spaziale Italiana (ASI) through contracts I/037/08/0, I/058/10/0, 2014-025-R.0, 2014-025-R.1.2015, and 2018-24-HH.0 to the Italian Istituto Nazionale di Astrofisica (INAF), contract 2014-049-R.0/1/2 to INAF for the Space Science Data Centre (SSDC, formerly known as the ASI Science Data Center, ASDC), contracts I/008/10/0, 2013/030/I.0, 2013-030-I.0.1-2015, and 2016-17-I.0 to the Aerospace Logistics Technology Engineering Company (ALTEC S.p.A.), INAF, and the Italian Ministry of Education, University, and Research (Ministero dell’Istruzione, dell’UniversitĂ  e della Ricerca) through the Premiale project ‘MIning The Cosmos Big Data and Innovative Italian Technology for Frontier Astrophysics and Cosmology’ (MITiC); ‱ the Netherlands Organisation for Scientific Research (NWO) through grant NWO-M-614.061.414, through a VICI grant (A. Helmi), and through a Spinoza prize (A. Helmi), and the Netherlands Research School for Astronomy (NOVA); ‱ the Polish National Science Centre through HARMONIA grant 2018/30/M/ST9/00311 and DAINA grant 2017/27/L/ST9/03221 and the Ministry of Science and Higher Education (MNiSW) through grant DIR/WK/2018/12; ‱ the Portuguese Fundação para a CiĂȘncia e a Tecnologia (FCT) through national funds, grants SFRH/-BD/128840/2017 and PTDC/FIS-AST/30389/2017, and work contract DL 57/2016/CP1364/CT0006, the Fundo Europeu de Desenvolvimento Regional (FEDER) through grant POCI-01-0145-FEDER-030389 and its Programa Operacional Competitividade e Internacionalização (COMPETE2020) through grants UIDB/04434/2020 and UIDP/04434/2020, and the Strategic Programme UIDB/-00099/2020 for the Centro de AstrofĂ­sica e Gravitação (CENTRA); ‱ the Slovenian Research Agency through grant P1-0188; ‱ the Spanish Ministry of Economy (MINECO/FEDER, UE), the Spanish Ministry of Science and Innovation (MICIN), the Spanish Ministry of Education, Culture, and Sports, and the Spanish Government through grants BES-2016-078499, BES-2017-083126, BES-C-2017-0085, ESP2016-80079-C2-1-R, ESP2016-80079-C2-2-R, FPU16/03827, PDC2021-121059-C22, RTI2018-095076-B-C22, and TIN2015-65316-P (‘ComputaciĂłn de Altas Prestaciones VII’), the Juan de la Cierva IncorporaciĂłn Programme (FJCI-2015-2671 and IJC2019-04862-I for F. Anders), the Severo Ochoa Centre of Excellence Programme (SEV2015-0493), and MICIN/AEI/10.13039/501100011033 (and the European Union through European Regional Development Fund ‘A way of making Europe’) through grant RTI2018-095076-B-C21, the Institute of Cosmos Sciences University of Barcelona (ICCUB, Unidad de Excelencia ‘MarĂ­a de Maeztu’) through grant CEX2019-000918-M, the University of Barcelona’s official doctoral programme for the development of an R+D+i project through an Ajuts de Personal Investigador en FormaciĂł (APIF) grant, the Spanish Virtual Observatory through project AyA2017-84089, the Galician Regional Government, Xunta de Galicia, through grants ED431B-2021/36, ED481A-2019/155, and ED481A-2021/296, the Centro de InvestigaciĂłn en TecnologĂ­as de la InformaciĂłn y las Comunicaciones (CITIC), funded by the Xunta de Galicia and the European Union (European Regional Development Fund – Galicia 2014-2020 Programme), through grant ED431G-2019/01, the Red Española de SupercomputaciĂłn (RES) computer resources at MareNostrum, the Barcelona Supercomputing Centre – Centro Nacional de SupercomputaciĂłn (BSC-CNS) through activities AECT-2017-2-0002, AECT-2017-3-0006, AECT-2018-1-0017, AECT-2018-2-0013, AECT-2018-3-0011, AECT-2019-1-0010, AECT-2019-2-0014, AECT-2019-3-0003, AECT-2020-1-0004, and DATA-2020-1-0010, the Departament d’InnovaciĂł, Universitats i Empresa de la Generalitat de Catalunya through grant 2014-SGR-1051 for project ‘Models de ProgramaciĂł i Entorns d’ExecuciĂł Parallels’ (MPEXPAR), and Ramon y Cajal Fellowship RYC2018-025968-I funded by MICIN/AEI/10.13039/501100011033 and the European Science Foundation (‘Investing in your future’); ‱ the Swedish National Space Agency (SNSA/Rymdstyrelsen); ‱ the Swiss State Secretariat for Education, Research, and Innovation through the Swiss ActivitĂ©s Nationales ComplĂ©mentaires and the Swiss National Science Foundation through an Eccellenza Professorial Fellowship (award PCEFP2_194638 for R. Anderson); ‱ the United Kingdom Particle Physics and Astronomy Research Council (PPARC), the United Kingdom Science and Technology Facilities Council (STFC), and the United Kingdom Space Agency (UKSA) through the following grants to the University of Bristol, the University of Cambridge, the University of Edinburgh, the University of Leicester, the Mullard Space Sciences Laboratory of University College London, and the United Kingdom Rutherford Appleton Laboratory (RAL): PP/D006511/1, PP/D006546/1, PP/D006570/1, ST/I000852/1, ST/J005045/1, ST/K00056X/1, ST/-K000209/1, ST/K000756/1, ST/L006561/1, ST/N000595/1, ST/N000641/1, ST/N000978/1, ST/-N001117/1, ST/S000089/1, ST/S000976/1, ST/S000984/1, ST/S001123/1, ST/S001948/1, ST/-S001980/1, ST/S002103/1, ST/V000969/1, ST/W002469/1, ST/W002493/1, ST/W002671/1, ST/W002809/1, and EP/V520342/1
    corecore