6,034 research outputs found

    Magnifying perfect lens and superlens design by coordinate transformation

    Get PDF
    The coordinate transformation technique is applied to the design of perfect lenses and superlenses. In particular, anisotropic metamaterials that magnify two-dimensional planar images beyond the diffraction limit are designed by the use of oblate spheroidal coordinates. The oblate spheroidal perfect lens or superlens can naturally be used in reverse for lithography of planar subwavelength patterns.Comment: 8 pages, 8 figures, v2: submitted, v3: accepted by Physical Review

    An ultracold low emittance electron source

    Full text link
    Ultracold atom-based electron sources have recently been proposed as an alternative to the conventional photo-injectors or thermionic electron guns widely used in modern particle accelerators. The advantages of ultracold atom-based electron sources lie in the fact that the electrons extracted from the plasma (created from near threshold photo-ionization of ultracold atoms) have a very low temperature, i.e. down to tens of Kelvin. Extraction of these electrons has the potential for producing very low emittance electron bunches. These features are crucial for the next generation of particle accelerators, including free electron lasers, plasma-based accelerators and future linear colliders. The source also has many potential direct applications, including ultrafast electron diffraction (UED) and electron microscopy, due to its intrinsically high coherence. In this paper, the basic mechanism of ultracold electron beam production is discussed and our new research facility for an ultracold, low emittance electron source is introduced. This source is based on a novel alternating current Magneto-Optical Trap (the AC-MOT). Detailed simulations for a proposed extraction system have shown that for a 1 pC bunch charge, a beam emittance of 0.35 mm mrad is obtainable, with a bunch length of 3 mm and energy spread 1 %.Comment: 15 pages, 9 figures, to be published in Journal of Instrumentation in 201

    Ampelisca lusitanica (Crustacea: Amphipoda): new species for the Atlantic coast of Morocco

    Get PDF
    Background This study reports for the first time the presence of the Lusitanian ampeliscid amphipod Ampelisca lusitanica Bellan-Santini & Marques, 1986 in the northwestern Atlantic coast of Morocco. Methods Specimens were collected in January 2015 from intertidal rock pools along the El Jadida shoreline associated with the brown algae Bifurcaria bifurcata and Sargassum muticum. Results Systematic description of the species is presented, as well as a discussion of its ecological and geographical distribution. Conclusion This new finding extends the geographical distribution from the Lusitanian (Europe) to the Mauritanian (Africa) region and increases knowledge of the ecology and the global distribution of A. lusitanica found, previously, only on Portuguese and Spanish coasts.info:eu-repo/semantics/publishedVersio

    Burkitt lymphoma beyond MYC translocation: N-MYC and DNA methyltransferases dysregulation

    Get PDF
    Background: The oncogenic transcription factor MYC is pathologically activated in many human malignancies. A paradigm for MYC dysregulation is offered by Burkitt lymphoma, where chromosomal translocations leading to Immunoglobulin gene-MYC fusion are the crucial initiating oncogenic events. However, Burkitt lymphoma cases with no detectable MYC rearrangement but maintaining MYC expression have been identified and alternative mechanisms can be involved in MYC dysregulation in these cases. Methods: We studied the microRNA profile of MYC translocation-positive and MYC translocation-negative Burkitt lymphoma cases in order to uncover possible differences at the molecular level. Data was validated at the mRNA and protein level by quantitative Real-Time polymerase chain reaction and immunohistochemistry, respectively. Results: We identified four microRNAs differentially expressed between the two groups. The impact of these microRNAs on the expression of selected genes was then investigated. Interestingly, in MYC translocation-negative cases we found over-expression of DNA-methyl transferase family members, consistent to hypo-expression of the hsa-miR-29 family. This finding suggests an alternative way for the activation of lymphomagenesis in these cases, based on global changes in methylation landscape, aberrant DNA hypermethylation, lack of epigenetic control on transcription of targeted genes, and increase of genomic instability. In addition, we observed an over-expression of another MYC family gene member, MYCN that may therefore represent a cooperating mechanism of MYC in driving the malignant transformation in those cases lacking an identifiable MYC translocation but expressing the gene at the mRNA and protein levels. Conclusions: Collectively, our results showed that MYC translocation-positive and MYC translocation-negative Burkitt lymphoma cases are slightly different in terms of microRNA and gene expression. MYC translocation-negative Burkitt lymphoma, similarly to other aggressive B-cell non Hodgkin's lymphomas, may represent a model to understand the intricate molecular pathway responsible for MYC dysregulation in cancer
    • 

    corecore