16 research outputs found

    Use of ChAd3-EBO-Z Ebola virus vaccine in Malian and US adults, and boosting of Malian adults with MVA-BN-Filo: a phase 1, single-blind, randomised trial, a phase 1b, open-label and double-blind, dose-escalation trial, and a nested, randomised, double-blind, placebo-controlled trial

    Get PDF
    SummaryBackgroundThe 2014 west African Zaire Ebola virus epidemic prompted worldwide partners to accelerate clinical development of replication-defective chimpanzee adenovirus 3 vector vaccine expressing Zaire Ebola virus glycoprotein (ChAd3-EBO-Z). We aimed to investigate the safety, tolerability, and immunogenicity of ChAd3-EBO-Z in Malian and US adults, and assess the effect of boosting of Malians with modified vaccinia Ankara expressing Zaire Ebola virus glycoprotein and other filovirus antigens (MVA-BN-Filo).MethodsIn the phase 1, single-blind, randomised trial of ChAd3-EBO-Z in the USA, we recruited adults aged 18–65 years from the University of Maryland medical community and the Baltimore community. In the phase 1b, open-label and double-blind, dose-escalation trial of ChAd3-EBO-Z in Mali, we recruited adults 18–50 years of age from six hospitals and health centres in Bamako (Mali), some of whom were also eligible for a nested, randomised, double-blind, placebo-controlled trial of MVA-BN-Filo. For randomised segments of the Malian trial and for the US trial, we randomly allocated participants (1:1; block size of six [Malian] or four [US]; ARB produced computer-generated randomisation lists; clinical staff did randomisation) to different single doses of intramuscular immunisation with ChAd3-EBO-Z: Malians received 1β€ˆΓ—β€ˆ1010 viral particle units (pu), 2Β·5β€ˆΓ—β€ˆ1010 pu, 5β€ˆΓ—β€ˆ1010 pu, or 1β€ˆΓ—β€ˆ1011 pu; US participants received 1β€ˆΓ—β€ˆ1010 pu or 1β€ˆΓ—β€ˆ1011 pu. We randomly allocated Malians in the nested trial (1:1) to receive a single dose of 2β€ˆΓ—β€ˆ108 plaque-forming units of MVA-BN-Filo or saline placebo. In the double-blind segments of the Malian trial, investigators, clinical staff, participants, and immunology laboratory staff were masked, but the study pharmacist (MK), vaccine administrator, and study statistician (ARB) were unmasked. In the US trial, investigators were not masked, but participants were. Analyses were per protocol. The primary outcome was safety, measured with occurrence of adverse events for 7 days after vaccination. Both trials are registered with ClinicalTrials.gov, numbers NCT02231866 (US) and NCT02267109 (Malian).FindingsBetween Oct 8, 2014, and Feb 16, 2015, we randomly allocated 91 participants in Mali (ten [11%] to 1β€ˆΓ—β€ˆ1010 pu, 35 [38%] to 2Β·5β€ˆΓ—β€ˆ1010 pu, 35 [38%] to 5β€ˆΓ—β€ˆ1010 pu, and 11 [12%] to 1β€ˆΓ—β€ˆ1011 pu) and 20 in the USA (ten [50%] to 1β€ˆΓ—β€ˆ1010 pu and ten [50%] to 1β€ˆΓ—β€ˆ1011 pu), and boosted 52 Malians with MVA-BN-Filo (27 [52%]) or saline (25 [48%]). We identified no safety concerns with either vaccine: seven (8%) of 91 participants in Mali (five [5%] received 5β€ˆΓ—β€ˆ1010 and two [2%] received 1β€ˆΓ—β€ˆ1011 pu) and four (20%) of 20 in the USA (all received 1β€ˆΓ—β€ˆ1011 pu) given ChAd3-EBO-Z had fever lasting for less than 24 h, and 15 (56%) of 27 Malians boosted with MVA-BN-Filo had injection-site pain or tenderness.Interpretation1β€ˆΓ—β€ˆ1011 pu single-dose ChAd3-EBO-Z could suffice for phase 3 efficacy trials of ring-vaccination containment needing short-term, high-level protection to interrupt transmission. MVA-BN-Filo boosting, although a complex regimen, could confer long-lived protection if needed (eg, for health-care workers).FundingWellcome Trust, Medical Research Council UK, Department for International Development UK, National Cancer Institute, Frederick National Laboratory for Cancer Research, Federal Funds from National Institute of Allergy and Infectious Diseases

    Correlation between herpes simplex virus neutralizing antibody titers determined by ELVIS cell and traditional plaque reduction assays.

    No full text
    Preventive viral vaccine efficacy trials require large-scale sample analysis to quantitate immune responses and their correlation with infection outcomes. Traditional plaque reduction assays measure a functionally important form of humoral immunity, neutralizing antibody titer. These assays, however, are time-consuming and laborious. We previously developed a higher throughput assay of neutralizing antibody to herpes simplex viruses 1 and 2 (Blevins et al., PLOS ONE, 10(12), e0144738) using the enzyme-linked virus inducible system (ELVIS) cell line; this cell line produces Ξ²-galactosidase in response to HSV infection. Here, serum samples from recipients of an investigational vaccine in the Herpevac Trial for Women were used to compare the ELVIS cell assay with the lower throughput, traditional plaque reduction assay. We demonstrate that neutralizing antibody titers to HSV-1 or HSV-2 determined using ELVIS cells positively correlate with neutralizing antibody titers determined by traditional plaque reduction assay, thus validating a higher throughput alternative for large-scale sample analysis

    Safety and immunogenicity of investigational seasonal influenza hemagglutinin DNA vaccine followed by trivalent inactivated vaccine administered intradermally or intramuscularly in healthy adults: An open-label randomized phase 1 clinical trial.

    No full text
    BackgroundSeasonal influenza results in significant morbidity and mortality worldwide, but the currently licensed inactivated vaccines generally have low vaccine efficacies and could be improved. In this phase 1 clinical trial, we compared seasonal influenza vaccine regimens with different priming strategies, prime-boost intervals, and administration routes to determine the impact of these variables on the resulting antibody response.MethodsBetween August 17, 2012 and January 25, 2013, four sites enrolled healthy adults 18-70 years of age. Subjects were randomized to receive one of the following vaccination regimens: trivalent hemagglutinin (HA) DNA prime followed by trivalent inactivated influenza vaccine (IIV3) boost with a 3.5 month interval (DNA-IIV3), IIV3 prime followed by IIV3 boost with a 10 month interval (IIV3-IIV3), or concurrent DNA and IIV3 prime followed by IIV3 boost with a 10 month interval (DNA/IIV3-IIV3). Each regimen was additionally stratified by an IIV3 administration route of either intramuscular (IM) or intradermal (ID). DNA vaccines were administered by a needle-free jet injector (Biojector). Study objectives included evaluating the safety and tolerability of each regimen and measuring the antibody response by hemagglutination inhibition (HAI).ResultsThree hundred and sixteen subjects enrolled. Local reactogenicity was mild to moderate in severity, with higher frequencies recorded following DNA vaccine administered by Biojector compared to IIV3 by either route (p ConclusionsAll vaccination regimens were found to be safe and tolerable. While there were no overall differences between regimens, the DNA-IIV3 group by ID route, and the IIV3-IIV3 group by IM route, showed higher responses compared to the other same-route regimens

    DNA vaccine priming for seasonal influenza vaccine in children and adolescents 6 to 17 years of age: A phase 1 randomized clinical trial.

    No full text
    BACKGROUND:Children are susceptible to severe influenza infections and facilitate community transmission. One potential strategy to improve vaccine immunogenicity in children against seasonal influenza involves a trivalent hemagglutinin DNA prime-trivalent inactivated influenza vaccine (IIV3) boost regimen. METHODS:Sites enrolled adolescents, followed by younger children, to receive DNA prime (1 mg or 4 mg) intramuscularly by needle-free jet injector (Biojector), followed by split virus 2012/13 seasonal IIV3 boost by needle and syringe approximately 18 weeks later. A comparator group received IIV3 prime and boost at similar intervals. Primary study objectives included evaluation of the safety and tolerability of the vaccine regimens, with secondary objectives of measuring antibody responses at four weeks post boost by hemagglutination inhibition (HAI) and neutralization assays. RESULTS:Seventy-five children β‰₯6 to ≀17 years old enrolled. Local reactogenicity was higher after DNA prime compared to IIV3 prime (p<0.001 for pain/tenderness, redness, or swelling), but symptoms were mild to moderate in severity. Systemic reactogenicity was similar between vaccines. Overall, antibody responses were similar among groups, although HAI antibodies revealed a trend towards higher responses following 4 mg DNA-IIV3 compared to IIV3-IIV3. The fold increase of HAI antibodies to A/California/07/2009 [A(H1N1)pdm09] was significantly greater following 4 mg DNA-IIV3 (10.12 fold, 5.60-18.27 95%CI) compared to IIV3-IIV3 (3.86 fold, 2.32-6.44 95%CI). Similar neutralizing titers were observed between regimens, with a trend towards increased response frequencies in 4 mg DNA-IIV3. However, significant differences in fold increase, reported as geometric mean fold ratios, were detected against the H1N1 viruses within the neutralization panel: A/New Caledonia/20/1999 (1.41 fold, 1.10-1.81 95%CI) and A/South Carolina/1/1918 (1.55 fold, 1.27-1.89 95%CI). CONCLUSIONS:In this first pediatric DNA vaccine study conducted in the U.S., the DNA prime-IIV3 boost regimen was safe and well tolerated. In children, the 4 mg DNA-IIV3 regimen resulted in antibody responses comparable to the IIV3-IIV3 regimen

    DNA Priming for Seasonal Influenza Vaccine: A Phase 1b Double-Blind Randomized Clinical Trial

    No full text
    <div><p>Background</p><p>The efficacy of current influenza vaccines is limited in vulnerable populations. DNA vaccines can be produced rapidly, and may offer a potential strategy to improve vaccine immunogenicity, indicated by studies with H5 influenza DNA vaccine prime followed by inactivated vaccine boost.</p><p>Methods</p><p>Four sites enrolled healthy adults, randomized to receive 2011/12 seasonal influenza DNA vaccine prime (n=65) or phosphate buffered saline (PBS) (n=66) administered intramuscularly with Biojector. All subjects received the 2012/13 seasonal inactivated influenza vaccine, trivalent (IIV3) 36 weeks after the priming injection. Vaccine safety and tolerability was the primary objective and measurement of antibody response by hemagglutination inhibition (HAI) was the secondary objective.</p><p>Results</p><p>The DNA vaccine prime-IIV3 boost regimen was safe and well tolerated. Significant differences in HAI responses between the DNA vaccine prime and the PBS prime groups were not detected in this study.</p><p>Conclusion</p><p>While DNA priming significantly improved the response to a conventional monovalent H5 vaccine in a previous study, it was not effective in adults using seasonal influenza strains, possibly due to pre-existing immunity to the prime, unmatched prime and boost antigens, or the lengthy 36 week boost interval. Careful optimization of the DNA prime-IIV3 boost regimen as related to antigen matching, interval between vaccinations, and pre-existing immune responses to influenza is likely to be needed in further evaluations of this vaccine strategy. In particular, testing this concept in younger age groups with less prior exposure to seasonal influenza strains may be informative.</p><p>Trial Registration</p><p>ClinicalTrials.gov <a href="http://clinicaltrials.gov/ct2/show/NCT01498718" target="_blank">NCT01498718</a></p></div

    Influenza strains included in DNA vaccine prime and IIV3 boost.

    No full text
    <p>The trial was conducted at 4 clinical sites in the United States: Center for Vaccine Development, Saint Louis University, Saint Louis, Missouri; Cincinnati Children’s Hospital Medical Center Cincinnati, Ohio; Hope Clinic of the Emory Vaccine Center, Atlanta, Georgia; and Baylor College of Medicine, Houston, Texas. The first subject was screened for recruitment on December 20, 2011, study vaccinations began on January 10, 2012 and study follow-up continued through April 17, 2013.</p><p>Influenza strains included in DNA vaccine prime and IIV3 boost.</p
    corecore