4,360 research outputs found
Short-scale turbulent fluctuations driven by the electron-temperature gradient in the national spherical torus experiment
Measurements with coherent scattering of electromagnetic waves in plasmas of the National Spherical Torus Experiment indicate the existence of turbulent fluctuations in the range of wave numbers k(perpendicular to)rho(e)=0.1-0.4, corresponding to a turbulence scale length nearly equal to the collisionless skin depth. Experimental observations and agreement with numerical results from a linear gyrokinetic stability code support the conjecture that the observed turbulence is driven by the electron-temperature gradient.X1155sciescopu
Conclusive quantum steering with superconducting transition edge sensors
Quantum steering allows two parties to verify shared entanglement even if one
measurement device is untrusted. A conclusive demonstration of steering through
the violation of a steering inequality is of considerable fundamental interest
and opens up applications in quantum communication. To date all experimental
tests with single photon states have relied on post-selection, allowing
untrusted devices to cheat by hiding unfavourable events in losses. Here we
close this "detection loophole" by combining a highly efficient source of
entangled photon pairs with superconducting transition edge sensors. We achieve
an unprecedented ~62% conditional detection efficiency of entangled photons and
violate a steering inequality with the minimal number of measurement settings
by 48 standard deviations. Our results provide a clear path to practical
applications of steering and to a photonic loophole-free Bell test.Comment: Preprint of 7 pages, 3 figures; the definitive version is published
in Nature Communications, see below. Also, see related experimental work by
A. J. Bennet et al., arXiv:1111.0739 and B. Wittmann et al., arXiv:1111.076
Free randomness can be amplified
Are there fundamentally random processes in nature? Theoretical predictions,
confirmed experimentally, such as the violation of Bell inequalities, point to
an affirmative answer. However, these results are based on the assumption that
measurement settings can be chosen freely at random, so assume the existence of
perfectly free random processes from the outset. Here we consider a scenario in
which this assumption is weakened and show that partially free random bits can
be amplified to make arbitrarily free ones. More precisely, given a source of
random bits whose correlation with other variables is below a certain
threshold, we propose a procedure for generating fresh random bits that are
virtually uncorrelated with all other variables. We also conjecture that such
procedures exist for any non-trivial threshold. Our result is based solely on
the no-signalling principle, which is necessary for the existence of free
randomness.Comment: 5+7 pages, 2 figures. Updated to match published versio
Recommended from our members
Tradition and Innovation in Classical Sociology: Tenth Anniversary Report of JCS
Perhaps the very idea of ‘classical sociology’ is a contradiction in terms; sociology was originally that social science peculiarly concerned with the study of the processes of modernization and the condition of modernity, that is, with the critical examination of ‘post-traditional’ developments and hence ‘post-classical’ forms of social organization. Its concerns have broadened subsequently, but the focus of sociology remains on the exploration of the nature and development of social structure and social action in the post-traditional world. In the nineteenth century, sociologists invented new concepts and experimented with new methods to study the emergence of unprecedented social phenomena and the rise of a type of society that was variously called ‘modern society’, ‘industrial society’, and ‘capitalist society’. In the twentieth century, there was a further elaboration of key sociological concepts, and it became increasingly popular to proclaim the rise of yet another form of society, described as ‘post-industrial society’, ‘late modern society’, ‘post-modern society’, or ‘network society’. In the current century, the idea of globalization has swept everything before it, leading to the notion that ‘society’ has now been replaced by flows and networks of people, objects, and ideas. With the transition from traditional to modern societies, the integrative power of Gemeinschaft began to compete with the systemic power of Gesellschaft; with the transition from modern to late modern societies, the local horizons of our Lebenswelt appear to be increasingly shaped by the deterritorialized networks of the Weltgesellschaft. If we are ‘post-traditional’, surely we are also ‘post-classical’. It is hardly surprising, therefore, that many contemporary sociologists have some difficulty accepting the very idea of classical sociology
Engaging with community researchers for exposure science: lessons learned from a pesticide biomonitoring study
A major challenge in biomonitoring studies with members of the general public is ensuring their continued involvement throughout the necessary length of the research. The paper presents evidence on the use of community researchers, recruited from local study areas, as a mechanism for ensuring effective recruitment and retention of farmer and resident participants for a pesticides biomonitoring study. The evidence presented suggests that community researchers' abilities to build and sustain trusting relationships with participants enhanced the rigour of the study as a result of their on-the-ground responsiveness and flexibility resulting in data collection beyond targets expected
Non-thermal emission processes in massive binaries
In this paper, I present a general discussion of several astrophysical
processes likely to play a role in the production of non-thermal emission in
massive stars, with emphasis on massive binaries. Even though the discussion
will start in the radio domain where the non-thermal emission was first
detected, the census of physical processes involved in the non-thermal emission
from massive stars shows that many spectral domains are concerned, from the
radio to the very high energies.
First, the theoretical aspects of the non-thermal emission from early-type
stars will be addressed. The main topics that will be discussed are
respectively the physics of individual stellar winds and their interaction in
binary systems, the acceleration of relativistic electrons, the magnetic field
of massive stars, and finally the non-thermal emission processes relevant to
the case of massive stars. Second, this general qualitative discussion will be
followed by a more quantitative one, devoted to the most probable scenario
where non-thermal radio emitters are massive binaries. I will show how several
stellar, wind and orbital parameters can be combined in order to make some
semi-quantitative predictions on the high-energy counterpart to the non-thermal
emission detected in the radio domain.
These theoretical considerations will be followed by a census of results
obtained so far, and related to this topic... (see paper for full abstract)Comment: 47 pages, 5 postscript figures, accepted for publication in Astronomy
and Astrophysics Review. Astronomy and Astrophysics Review, in pres
Enterprise social network success: Evidences from a multinational corporation
In a globalized world, where companies operate across different locations and work becomes increasingly complex, collaboration in a diversity of ways is required among employees to perform tasks more effectively. Following a case study methodology that involved six interviews across three different country locations, this research addresses the phenomenon of Enterprise Social Networks (ESN) in a multinational corporation with a focus on the assessment of ESN success. The findings show that the company, while trying to assess the success of Yammer, the freemium social networking service at use, has mainly relied on analytics tools to measure usage through indicators such as the total number of users. However, the extent to which ESN is used does not provide a complete picture of ESN success. Business value from that ESN usage is another dimension to be considered to assess success. Therefore, the study of specific ESN usage scenarios that are perceived to have a trackable impact on business results can be used to assess ESN business value on top of ESN usage to fully understand ESN success.COMPETE: POCI-01-0145-FEDER-007043 and FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013info:eu-repo/semantics/publishedVersio
Combination schemes for turning point prediction
We propose new forecast combination schemes for predicting turning points of business cycles. The combination schemes deal with the forecasting performance of a given set of models and possibly providing better turning point predictions. We consider turning point predictions generated by autoregressive (AR) and Markov-Switching AR models, which are commonly used for business cycle analysis. In order to account for parameter uncertainty we consider a Bayesian approach to both estimation and prediction and compare, in terms of statistical accuracy, the individual models and the combined turning point predictions for the United States and Euro area business cycles
The luminosity function of field galaxies
Schmidt's method for construction of luminosity function of galaxies is
generalized by taking into account the dependence of density of galaxies from
the distance in the near Universe. The logarithmical luminosity function (LLF)
of field galaxies depending on morphological type is constructed. We show that
the LLF for all galaxies, and also separately for elliptical and lenticular
galaxies can be presented by Schechter function in narrow area of absolute
magnitudes. The LLF of spiral galaxies was presented by Schechter function for
enough wide area of absolute magnitudes: . Spiral galaxies differ slightly by
parameter . At transition from early spirals to the late spirals parameter in
Schechter function is reduced. The reduction of mean luminosity of galaxies is
observed at transition from elliptical galaxies to lenticular galaxies, to
early spiral galaxies, and further, to late spiral galaxies, in a bright end, .
The completeness and the average density of samples of galaxies of different
morphological types are estimated. In the range the mean number density of all
galaxies is equal 0.127 Mpc-3.Comment: 14 page, 8 figures, to appear in Astrophysic
- …
