34,855 research outputs found

    Extended Representations of Observables and States for a Noncontextual Reinterpretation of QM

    Full text link
    A crucial and problematical feature of quantum mechanics (QM) is nonobjectivity of properties. The ESR model restores objectivity reinterpreting quantum probabilities as conditional on detection and embodying the mathematical formalism of QM into a broader noncontextual (hence local) framework. We propose here an improved presentation of the ESR model containing a more complete mathematical representation of the basic entities of the model. We also extend the model to mixtures showing that the mathematical representations of proper mixtures does not coincide with the mathematical representation of mixtures provided by QM, while the representation of improper mixtures does. This feature of the ESR model entails that some interpretative problems raising in QM when dealing with mixtures are avoided. From an empirical point of view the predictions of the ESR model depend on some parameters which may be such that they are very close to the predictions of QM in most cases. But the nonstandard representation of proper mixtures allows us to propose the scheme of an experiment that could check whether the predictions of QM or the predictions of the ESR model are correct.Comment: 17 pages, standard latex. Extensively revised versio

    An algebraic approach to problems with polynomial Hamiltonians on Euclidean spaces

    Full text link
    Explicit expressions are given for the actions and radial matrix elements of basic radial observables on multi-dimensional spaces in a continuous sequence of orthonormal bases for unitary SU(1,1) irreps. Explicit expressions are also given for SO(N)-reduced matrix elements of basic orbital observables. These developments make it possible to determine the matrix elements of polynomial and a other Hamiltonians analytically, to within SO(N) Clebsch-Gordan coefficients, and to select an optimal basis for a particular problem such that the expansion of eigenfunctions is most rapidly convergent.Comment: 19 pages, 8 figure

    Temporal and Spatial Dependence of Quantum Entanglement from a Field Theory Perspective

    Full text link
    We consider the entanglement dynamics between two Unruh-DeWitt detectors at rest separated at a distance dd. This simple model when analyzed properly in quantum field theory shows many interesting facets and helps to dispel some misunderstandings of entanglement dynamics. We find that there is spatial dependence of quantum entanglement in the stable regime due to the phase difference of vacuum fluctuations the two detectors experience, together with the interference of the mutual influences from the backreaction of one detector on the other. When two initially entangled detectors are still outside each other's light cone, the entanglement oscillates in time with an amplitude dependent on spatial separation dd. When the two detectors begin to have causal contact, an interference pattern of the relative degree of entanglement (compared to those at spatial infinity) develops a parametric dependence on dd. The detectors separated at those dd with a stronger relative degree of entanglement enjoy longer disentanglement times. In the cases with weak coupling and large separation, the detectors always disentangle at late times. For sufficiently small dd, the two detectors can have residual entanglement even if they initially were in a separable state, while for dd a little larger, there could be transient entanglement created by mutual influences. However, we see no evidence of entanglement creation outside the light cone for initially separable states.Comment: 21 pages, 8 figures. Minor changes. Some plots are re-expressed in logarithmic negativity. No change in the overall result

    Gravity and Nonequilibrium Thermodynamics of Classical Matter

    Full text link
    Renewed interest in deriving gravity (more precisely, the Einstein equations) from thermodynamics considerations [1, 2] is stirred up by a recent proposal that 'gravity is an entropic force' [3] (see also [4]). Even though I find the arguments justifying such a claim in this latest proposal rather ad hoc and simplistic compared to the original one I would unreservedly support the call to explore deeper the relation between gravity and thermodynamics, this having the same spirit as my long-held view that general relativity is the hydrodynamic limit [5, 6] of some underlying theories for the microscopic structure of spacetime - all these proposals, together with that of [7, 8], attest to the emergent nature of gravity [9]. In this first paper of two we set the modest goal of studying the nonequilibrium thermodynamics of classical matter only, bringing afore some interesting prior results, without invoking any quantum considerations such as Bekenstein-Hawking entropy, holography or Unruh effect. This is for the sake of understanding the nonequilibrium nature of classical gravity which is at the root of many salient features of black hole physics. One important property of gravitational systems, from self-gravitating gas to black holes, is their negative heat capacity, which is the source of many out-of-the ordinary dynamical and thermodynamic features such as the non-existence in isolated systems of thermodynamically stable configurations, which actually provides the condition for gravitational stability. A related property is that, being systems with long range interaction, they are nonextensive and relax extremely slowly towards equilibrium. Here we explore how much of the known features of black hole thermodynamics can be derived from this classical nonequilibrium perspective. A sequel paper will address gravity and nonequilibrium thermodynamics of quantum fields [10].Comment: 25 pages essay. Invited Talk at Mariofest, March 2010, Rosario, Argentina. Festschrift to appear as an issue of IJMP

    Improved Color-Temperature Relations and Bolometric Corrections for Cool Stars

    Full text link
    We present new grids of colors and bolometric corrections for F-K stars having 4000 K < Teff < 6500 K, 0.0 < log g < 4.5 and -3.0 < [Fe/H] < 0.0. A companion paper extends these calculations into the M giant regime. Colors are tabulated for Johnson U-V and B-V; Cousins V-R and V-I; Johnson-Glass V-K, J-K and H-K; and CIT/CTIO V-K, J-K, H-K and CO. We have developed these color-temperature (CT) relations by convolving synthetic spectra with photometric filter-transmission-profiles. The synthetic spectra have been computed with the SSG spectral synthesis code using MARCS stellar atmosphere models as input. Both of these codes have been improved substantially, especially at low temperatures, through the incorporation of new opacity data. The resulting synthetic colors have been put onto the observational systems by applying color calibrations derived from models and photometry of field stars which have Teffs determined by the infrared-flux method. The color calibrations have zero points and slopes which change most of the original synthetic colors by less than 0.02 mag and 5%, respectively. The adopted Teff scale (Bell & Gustafsson 1989) is confirmed by the extraordinary agreement between the predicted and observed angular diameters of the field stars. We have also derived empirical CT relations from the field-star photometry. Except for the coolest dwarfs (Teff < 5000 K), our calibrated, solar-metallicity model colors are found to match these and other empirical relations quite well. Our calibrated, 4 Gyr, solar-metallicity isochrone also provides a good match to color-magnitude diagrams of M67. We regard this as evidence that our calibrated colors can be applied to many astrophysical problems, including modelling the integrated light of galaxies. (abridged)Comment: To appear in the March 2000 issue of the Astronomical Journal. 72 pages including 16 embedded postscript figures (one page each) and 6 embedded postscript tables (18 pages total

    Low frequency m=1 normal mode oscillations of a self-gravitating disc

    Full text link
    A continuous system such as a galactic disc is shown to be well approximated by an N-ring differentially rotating self-gravitating system. Lowest order (m=1) non-axisymmetric features such as lopsidedness and warps are global in nature and quite common in the discs of spiral galaxies. Apparently these two features of the galactic discs have been treated like two completely disjoint phenomena. The present analysis based on an eigenvalue approach brings out clearly that these two features are fundamentally similar in nature and they are shown to be very Low frequency Normal Mode (LNM) oscillations manifested in different symmetry planes of the galactic disc. Our analysis also show that these features are actually long-lived oscillating pattern of the N-ring self-gravitating system.Comment: 5 figures. Accepted for publication in MNRAS Letter

    Quantum theory of successive projective measurements

    Full text link
    We show that a quantum state may be represented as the sum of a joint probability and a complex quantum modification term. The joint probability and the modification term can both be observed in successive projective measurements. The complex modification term is a measure of measurement disturbance. A selective phase rotation is needed to obtain the imaginary part. This leads to a complex quasiprobability, the Kirkwood distribution. We show that the Kirkwood distribution contains full information about the state if the two observables are maximal and complementary. The Kirkwood distribution gives a new picture of state reduction. In a nonselective measurement, the modification term vanishes. A selective measurement leads to a quantum state as a nonnegative conditional probability. We demonstrate the special significance of the Schwinger basis.Comment: 6 page

    Classical statistical distributions can violate Bell-type inequalities

    Get PDF
    We investigate two-particle phase-space distributions in classical mechanics characterized by a well-defined value of the total angular momentum. We construct phase-space averages of observables related to the projection of the particles' angular momenta along axes with different orientations. It is shown that for certain observables, the correlation function violates Bell's inequality. The key to the violation resides in choosing observables impeding the realization of the counterfactual event that plays a prominent role in the derivation of the inequalities. This situation can have statistical (detection related) or dynamical (interaction related) underpinnings, but non-locality does not play any role.Comment: v3: Extended version. To be published in J. Phys.

    Quantum Equilibrium and the Origin of Absolute Uncertainty

    Full text link
    The quantum formalism is a ``measurement'' formalism--a phenomenological formalism describing certain macroscopic regularities. We argue that it can be regarded, and best be understood, as arising from Bohmian mechanics, which is what emerges from Schr\"odinger's equation for a system of particles when we merely insist that ``particles'' means particles. While distinctly non-Newtonian, Bohmian mechanics is a fully deterministic theory of particles in motion, a motion choreographed by the wave function. We find that a Bohmian universe, though deterministic, evolves in such a manner that an {\it appearance} of randomness emerges, precisely as described by the quantum formalism and given, for example, by ``\rho=|\psis|^2.'' A crucial ingredient in our analysis of the origin of this randomness is the notion of the effective wave function of a subsystem, a notion of interest in its own right and of relevance to any discussion of quantum theory. When the quantum formalism is regarded as arising in this way, the paradoxes and perplexities so often associated with (nonrelativistic) quantum theory simply evaporate.Comment: 75 pages. This paper was published a long time ago, but was never archived. We do so now because it is basic for our recent article quant-ph/0308038, which can in fact be regarded as an appendix of the earlier on
    corecore