1,356 research outputs found

    HadISDH: an updateable land surface specific humidity product for climate monitoring

    Get PDF
    HadISDH is a near-global land surface specific humidity monitoring product providing monthly means from 1973 onwards over large-scale grids. Presented herein to 2012, annual updates are anticipated. HadISDH is an update to the land component of HadCRUH, utilising the global high-resolution land surface station product HadISD as a basis. HadISD, in turn, uses an updated version of NOAA's Integrated Surface Database. Intensive automated quality control has been undertaken at the individual observation level, as part of HadISD processing. The data have been subsequently run through the pairwise homogenisation algorithm developed for NCDC's US Historical Climatology Network monthly temperature product. For the first time, uncertainty estimates are provided at the grid-box spatial scale and monthly timescale. HadISDH is in good agreement with existing land surface humidity products in periods of overlap, and with both land air and sea surface temperature estimates. Widespread moistening is shown over the 1973–2012 period. The largest moistening signals are over the tropics with drying over the subtropics, supporting other evidence of an intensified hydrological cycle over recent years. Moistening is detectable with high (95%) confidence over large-scale averages for the globe, Northern Hemisphere and tropics, with trends of 0.089 (0.080 to 0.098) g kg−1 per decade, 0.086 (0.075 to 0.097) g kg−1 per decade and 0.133 (0.119 to 0.148) g kg−1 per decade, respectively. These changes are outside the uncertainty range for the large-scale average which is dominated by the spatial coverage component; station and grid-box sampling uncertainty is essentially negligible on large scales. A very small moistening (0.013 (−0.005 to 0.031) g kg−1 per decade) is found in the Southern Hemisphere, but it is not significantly different from zero and uncertainty is large. When globally averaged, 1998 is the moistest year since monitoring began in 1973, closely followed by 2010, two strong El Niño years. The period in between is relatively flat, concurring with previous findings of decreasing relative humidity over land

    Entangled graphs: Bipartite entanglement in multi-qubit systems

    Get PDF
    Quantum entanglement in multipartite systems cannot be shared freely. In order to illuminate basic rules of entanglement sharing between qubits we introduce a concept of an entangled structure (graph) such that each qubit of a multipartite system is associated with a point (vertex) while a bi-partite entanglement between two specific qubits is represented by a connection (edge) between these points. We prove that any such entangled structure can be associated with a pure state of a multi-qubit system. Moreover, we show that a pure state corresponding to a given entangled structure is a superposition of vectors from a subspace of the 2N2^N-dimensional Hilbert space, whose dimension grows linearly with the number of entangled pairs.Comment: 6 revtex pages, 2 figures, to appear in Phys. Rev.

    Seismology of the Sun : Inference of Thermal, Dynamic and Magnetic Field Structures of the Interior

    Full text link
    Recent overwhelming evidences show that the sun strongly influences the Earth's climate and environment. Moreover existence of life on this Earth mainly depends upon the sun's energy. Hence, understanding of physics of the sun, especially the thermal, dynamic and magnetic field structures of its interior, is very important. Recently, from the ground and space based observations, it is discovered that sun oscillates near 5 min periodicity in millions of modes. This discovery heralded a new era in solar physics and a separate branch called helioseismology or seismology of the sun has started. Before the advent of helioseismology, sun's thermal structure of the interior was understood from the evolutionary solution of stellar structure equations that mimicked the present age, mass and radius of the sun. Whereas solution of MHD equations yielded internal dynamics and magnetic field structure of the sun's interior. In this presentation, I review the thermal, dynamic and magnetic field structures of the sun's interior as inferred by the helioseismology.Comment: To be published in the proceedings of the meeting "3rd International Conference on Current Developments in Atomic, Molecular, Optical and Nano Physics with Applications", December 14-16, 2011, New Delhi, Indi

    The Point of Origin of the Radio Radiation from the Unresolved Cores of Radio-Loud Quasars

    Full text link
    Locating the exact point of origin of the core radiation in active galactic nuclei (AGN) would represent important progress in our understanding of physical processes in the central engine of these objects. However, due to our inability to resolve the region containing both the central compact object and the jet base, this has so far been difficult. Here, using an analysis in which the lack of resolution does not play a significant role, we demonstrate that it may be impossible even in most radio loud sources for more than a small percentage of the core radiation at radio wavelengths to come from the jet base. We find for 3C279 that ∼85\sim85 percent of the core flux at 15 GHz must come from a separate, reasonably stable, region that is not part of the jet base, and that then likely radiates at least quasi-isotropically and is centered on the black hole. The long-term stability of this component also suggests that it may originate in a region that extends over many Schwarzschild radii.Comment: 7 pages with 3 figures, accepted for publication in Astrophysics and Space Scienc

    Cartilage-specific ablation of XBP1 signaling in mouse results in a chondrodysplasia characterized by reduced chondrocyte proliferation and delayed cartilage maturation and mineralization

    Get PDF
    SummaryObjectiveTo investigate the in vivo role of the IRE1/XBP1 unfolded protein response (UPR) signaling pathway in cartilage.DesignXbp1flox/flox.Col2a1-Cre mice (Xbp1CartΔEx2), in which XBP1 activity is ablated specifically from cartilage, were analyzed histomorphometrically by Alizarin red/Alcian blue skeletal preparations and X-rays to examine overall bone growth, histological stains to measure growth plate zone length, chondrocyte organization, and mineralization, and immunofluorescence for collagen II, collagen X, and IHH. Bromodeoxyuridine (BrdU) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analyses were used to measure chondrocyte proliferation and cell death, respectively. Chondrocyte cultures and microdissected growth plate zones were analyzed for expression profiling of chondrocyte proliferation or endoplasmic reticulum (ER) stress markers by Quantitative PCR (qPCR), and of Xbp1 mRNA splicing by RT-PCR to monitor IRE1 activation.ResultsXbp1CartΔEx2 displayed a chondrodysplasia involving dysregulated chondrocyte proliferation, growth plate hypertrophic zone shortening, and IRE1 hyperactivation in chondrocytes. Deposition of collagens II and X in the Xbp1CartΔEx2 growth plate cartilage indicated that XBP1 is not required for matrix protein deposition or chondrocyte hypertrophy. Analyses of mid-gestation long bones revealed delayed ossification in Xbp1CartΔEx2 embryos. The rate of chondrocyte cell death was not significantly altered, and only minimal alterations in the expression of key markers of chondrocyte proliferation were observed in the Xbp1CartΔEx2 growth plate. IRE1 hyperactivation occurred in Xbp1CartΔEx2 chondrocytes but was not sufficient to induce regulated IRE1-dependent decay (RIDD) or a classical UPR.ConclusionOur work suggests roles for XBP1 in regulating chondrocyte proliferation and the timing of mineralization during endochondral ossification, findings which have implications for both skeletal development and disease

    Methods to Determine Neutrino Flux at Low Energies:Investigation of the Low ν\nu Method

    Get PDF
    We investigate the "low-ν\nu" method (developed by the CCFR/NUTEV collaborations) to determine the neutrino flux in a wide band neutrino beam at very low energies, a region of interest to neutrino oscillations experiments. Events with low hadronic final state energy ν<νcut\nu<\nu_{cut} (of 1, 2 and 5 GeV) were used by the MINOS collaboration to determine the neutrino flux in their measurements of neutrino (νμ\nu_\mu) and antineutrino (\nub_\mu) total cross sections. The lowest νμ\nu_\mu energy for which the method was used in MINOS is 3.5 GeV, and the lowest \nub_\mu energy is 6 GeV. At these energies, the cross sections are dominated by inelastic processes. We investigate the application of the method to determine the neutrino flux for νμ\nu_\mu, \nub_\mu energies as low as 0.7 GeV where the cross sections are dominated by quasielastic scattering and Δ\Delta(1232) resonance production. We find that the method can be extended to low energies by using νcut\nu_{cut} values of 0.25 and 0.50 GeV, which is feasible in fully active neutrino detectors such as MINERvA.Comment: 25 pages, 32 figures, to be published in European Physics Journal

    On the Global Existence of Bohmian Mechanics

    Get PDF
    We show that the particle motion in Bohmian mechanics, given by the solution of an ordinary differential equation, exists globally: For a large class of potentials the singularities of the velocity field and infinity will not be reached in finite time for typical initial values. A substantial part of the analysis is based on the probabilistic significance of the quantum flux. We elucidate the connection between the conditions necessary for global existence and the self-adjointness of the Schr\"odinger Hamiltonian.Comment: 35 pages, LaTe

    Entanglement, Bell Inequalities and Decoherence in Particle Physics

    Full text link
    We demonstrate the relevance of entanglement, Bell inequalities and decoherence in particle physics. In particular, we study in detail the features of the ``strange'' K0Kˉ0K^0 \bar K^0 system as an example of entangled meson--antimeson systems. The analogies and differences to entangled spin--1/2 or photon systems are worked, the effects of a unitary time evolution of the meson system is demonstrated explicitly. After an introduction we present several types of Bell inequalities and show a remarkable connection to CP violation. We investigate the stability of entangled quantum systems pursuing the question how possible decoherence might arise due to the interaction of the system with its ``environment''. The decoherence is strikingly connected to the entanglement loss of common entanglement measures. Finally, some outlook of the field is presented.Comment: Lectures given at Quantum Coherence in Matter: from Quarks to Solids, 42. Internationale Universit\"atswochen f\"ur Theoretische Physik, Schladming, Austria, Feb. 28 -- March 6, 2004, submitted to Lecture Notes in Physics, Springer Verlag, 45 page

    The Leptonic Higgs as a Messenger of Dark Matter

    Full text link
    We propose that the leptonic cosmic ray signals seen by PAMELA and ATIC result from the annihilation or decay of dark matter particles via states of a leptonic Higgs doublet to τ\tau leptons, linking cosmic ray signals of dark matter to LHC signals of the Higgs sector. The states of the leptonic Higgs doublet are lighter than about 200 GeV, yielding large τˉτ\bar{\tau} \tau and τˉττˉτ\bar{\tau} \tau \bar{\tau} \tau event rates at the LHC. Simple models are given for the dark matter particle and its interactions with the leptonic Higgs, for cosmic ray signals arising from both annihilations and decays in the galactic halo. For the case of annihilations, cosmic photon and neutrino signals are on the verge of discovery.Comment: 34 pages, 9 figures, minor typos corrected, references adde
    • …
    corecore