1,186 research outputs found

    Universal Ecological Patterns in College Basketball Communities

    Get PDF
    The rank abundance of common and rare species within ecological communities is remarkably consistent from the tropics to the tundra. This invariant patterning provides one of ecology's most enduring and unified tenets: most species rare and a few very common. Increasingly, attention is focused upon elucidating biological mechanisms that explain these species abundance distributions (SADs), but these evaluations remain controversial. We show that college basketball wins generate SADs just like those observed in ecological communities. Whereas college basketball wins are structured by competitive interactions, the result produces a SAD pattern indistinguishable from random wins. We also show that species abundance data for tropical trees exhibits a significant-digit pattern consistent with data derived from complex structuring forces. These results cast doubt upon the ability of SAD analysis to resolve ecological mechanism, and their patterning may reflect statistical artifact as much as biological processes

    An Update on Grading of Salivary Gland Carcinomas

    Get PDF
    Histologic grade is a significant predictor of outcome in salivary gland carcinomas. However, the sheer variety of tumor type and the rarity of these tumors pose challenges to devising highly predictive grading schemes. As our knowledge base has evolved, it is clear that carcinoma ex pleomorphic adenoma is not automatically a high grade tumor as is traditionally suggested. These tumors should be further qualified as to type/grade of carcinoma and extent, since intracapsular and minimally invasive carcinomas ex pleomorphic adenoma behave favorably. The two carcinoma types for which grading schemes are common include adenoid cystic carcinoma and mucoepidermoid carcinoma. Adenoid cystic carcinomas are graded based solely on pattern with solid components portending a worse prognosis. Occasionally, adenoid cystic carcinomas may undergo transformation to pleomorphic high grade carcinomas. This feature confers a high propensity for lymph node metastasis and should thus be reported to alert the clinical team. Mucoepidermoid carcinomas are graded in a three tier fashion based on a constellation of features including cystic component, border, mitoses, anaplasia, and perineural invasion among others. All grading schemes are somewhat cumbersome, intimidating and occasionally ambiguous, but evidence suggests that using a scheme consistently shows greater reproducibility than using an intuitive approach. The intermediate grade category demonstrates the most variability between grading systems and thus the most controversy in management. In the AFIP system intermediate grade tumors cluster with high grade tumors, while in the Brandwein system, they cluster with low grade tumors

    Time separation as a hidden variable to the Copenhagen school of quantum mechanics

    Full text link
    The Bohr radius is a space-like separation between the proton and electron in the hydrogen atom. According to the Copenhagen school of quantum mechanics, the proton is sitting in the absolute Lorentz frame. If this hydrogen atom is observed from a different Lorentz frame, there is a time-like separation linearly mixed with the Bohr radius. Indeed, the time-separation is one of the essential variables in high-energy hadronic physics where the hadron is a bound state of the quarks, while thoroughly hidden in the present form of quantum mechanics. It will be concluded that this variable is hidden in Feynman's rest of the universe. It is noted first that Feynman's Lorentz-invariant differential equation for the bound-state quarks has a set of solutions which describe all essential features of hadronic physics. These solutions explicitly depend on the time separation between the quarks. This set also forms the mathematical basis for two-mode squeezed states in quantum optics, where both photons are observable, but one of them can be treated a variable hidden in the rest of the universe. The physics of this two-mode state can then be translated into the time-separation variable in the quark model. As in the case of the un-observed photon, the hidden time-separation variable manifests itself as an increase in entropy and uncertainty.Comment: LaTex 10 pages with 5 figure. Invited paper presented at the Conference on Advances in Quantum Theory (Vaxjo, Sweden, June 2010), to be published in one of the AIP Conference Proceedings serie

    Detecting Subtle Changes in Visuospatial Executive Function and Learning in the Amnestic Variant of Mild Cognitive Impairment

    Get PDF
    BACKGROUND AND PURPOSE: Amnestic mild cognitive impairment (aMCI) is a putative prodromal stage of Alzheimer's disease (AD) characterized by deficits in episodic verbal memory. Our goal in the present study was to determine whether executive dysfunction may also be detectable in individuals diagnosed with aMCI. METHODS: This study used a hidden maze learning test to characterize component processes of visuospatial executive function and learning in a sample of 62 individuals with aMCI compared with 94 healthy controls. RESULTS: Relative to controls, individuals with aMCI made more exploratory/learning errors (Cohen's d = .41). Comparison of learning curves revealed that the slope between the first two of five learning trials was four times as steep for controls than for individuals with aMCI (Cohen's d = .64). Individuals with aMCI also made a significantly greater number of rule-break/error monitoring errors across learning trials (Cohen's d = .21). CONCLUSIONS: These results suggest that performance on a task of complex visuospatial executive function is compromised in individuals with aMCI, and likely explained by reductions in initial strategy formulation during early visual learning and "on-line" maintenance of task rules

    Perspective from a Younger Generation -- The Astro-Spectroscopy of Gisbert Winnewisser

    Full text link
    Gisbert Winnewisser's astronomical career was practically coextensive with the whole development of molecular radio astronomy. Here I would like to pick out a few of his many contributions, which I, personally, find particularly interesting and put them in the context of newer results.Comment: 14 pages. (Co)authored by members of the MPIfR (Sub)millimeter Astronomy Group. To appear in the Proceedings of the 4th Cologne-Bonn-Zermatt-Symposium "The Dense Interstellar Medium in Galaxies" eds. S. Pfalzner, C. Kramer, C. Straubmeier, & A. Heithausen (Springer: Berlin

    Radio emission from Supernova Remnants

    Get PDF
    The explosion of a supernova releases almost instantaneously about 10^51 ergs of mechanic energy, changing irreversibly the physical and chemical properties of large regions in the galaxies. The stellar ejecta, the nebula resulting from the powerful shock waves, and sometimes a compact stellar remnant, constitute a supernova remnant (SNR). They can radiate their energy across the whole electromagnetic spectrum, but the great majority are radio sources. Almost 70 years after the first detection of radio emission coming from a SNR, great progress has been achieved in the comprehension of their physical characteristics and evolution. We review the present knowledge of different aspects of radio remnants, focusing on sources of the Milky Way and the Magellanic Clouds, where the SNRs can be spatially resolved. We present a brief overview of theoretical background, analyze morphology and polarization properties, and review and critical discuss different methods applied to determine the radio spectrum and distances. The consequences of the interaction between the SNR shocks and the surrounding medium are examined, including the question of whether SNRs can trigger the formation of new stars. Cases of multispectral comparison are presented. A section is devoted to reviewing recent results of radio SNRs in the Magellanic Clouds, with particular emphasis on the radio properties of SN 1987A, an ideal laboratory to investigate dynamical evolution of an SNR in near real time. The review concludes with a summary of issues on radio SNRs that deserve further study, and analyzing the prospects for future research with the latest generation radio telescopes.Comment: Revised version. 48 pages, 15 figure

    The impact of trained patient educators on musculoskeletal clinical skills attainment in pre-clerkship medical students

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the high burden of musculoskeletal (MSK) diseases, few generalists are comfortable teaching MSK physical examination (PE) skills. Patient Partners<sup>® </sup>in Arthritis (PP<sup>®</sup>IA) is a standardized patient educator program that could potentially supplement current MSK PE teaching. This study aims to determine if differences exist in MSK PE skills between non-MSK specialist physician and PP<sup>®</sup>IA taught students.</p> <p>Methods</p> <p>Pre-clerkship medical students attended 2-hour small group MSK PE teaching by either non-MSK specialist physician tutors or by PP<sup>®</sup>IA. All students underwent an MSK OSCE and completed retrospective pre-post questionnaires regarding comfort with MSK PE and interest in MSK.</p> <p>Results</p> <p>83 students completed the OSCE (42 PP<sup>®</sup>IA, 41 physician taught) and 82 completed the questionnaire (42 PP<sup>®</sup>IA, 40 physician taught). There were no significant differences between groups in OSCE scores. For all questionnaire items, post-session ratings were significantly higher than pre-session ratings for both groups. In exploratory analysis PP<sup>®</sup>IA students showed significantly greater improvement in 12 of 22 questions including three of five patient-centred learning questions.</p> <p>Conclusions</p> <p>PP<sup>®</sup>IA MSK PE teaching is as good as non-MSK specialist physician tutor teaching when measured by a five station OSCE and provide an excellent complementary resource to address current deficits in MSK PE teaching.</p

    Are rapid diagnostic tests more accurate in diagnosis of plasmodium falciparum malaria compared to microscopy at rural health centres?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prompt, accurate diagnosis and treatment with artemisinin combination therapy remains vital to current malaria control. Blood film microscopy the current standard test for diagnosis of malaria has several limitations that necessitate field evaluation of alternative diagnostic methods especially in low income countries of sub-Saharan Africa where malaria is endemic.</p> <p>Methods</p> <p>The accuracy of axillary temperature, health centre (HC) microscopy, expert microscopy and a HRP2-based rapid diagnostic test (Paracheck) was compared in predicting malaria infection using polymerase chain reaction (PCR) as the gold standard. Three hundred patients with a clinical suspicion of malaria based on fever and or history of fever from a low and high transmission setting in Uganda were consecutively enrolled and provided blood samples for all tests. Accuracy of each test was calculated overall with 95% confidence interval and then adjusted for age-groups and level of transmission intensity using a stratified analysis. The endpoints were: sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). This study is registered with Clinicaltrials.gov, NCT00565071.</p> <p>Results</p> <p>Of the 300 patients, 88(29.3%) had fever, 56(18.7%) were positive by HC microscopy, 47(15.7%) by expert microscopy, 110(36.7%) by Paracheck and 89(29.7%) by PCR. The overall sensitivity >90% was only shown by Paracheck 91.0% [95%CI: 83.1-96.0]. The sensitivity of expert microscopy was 46%, similar to HC microscopy. The superior sensitivity of Paracheck compared to microscopy was maintained when data was stratified for transmission intensity and age. The overall specificity rates were: Paracheck 86.3% [95%CI: 80.9-90.6], HC microscopy 93.4% [95%CI: 89.1-96.3] and expert microscopy 97.2% [95%CI: 93.9-98.9]. The NPV >90% was shown by Paracheck 95.8% [95%CI: 91.9-98.2]. The overall PPV was <88% for all methods.</p> <p>Conclusion</p> <p>The HRP2-based RDT has shown superior sensitivity compared to microscopy in diagnosis of malaria and may be more suitable for screening of malaria infection.</p

    The Formation and Evolution of the First Massive Black Holes

    Full text link
    The first massive astrophysical black holes likely formed at high redshifts (z>10) at the centers of low mass (~10^6 Msun) dark matter concentrations. These black holes grow by mergers and gas accretion, evolve into the population of bright quasars observed at lower redshifts, and eventually leave the supermassive black hole remnants that are ubiquitous at the centers of galaxies in the nearby universe. The astrophysical processes responsible for the formation of the earliest seed black holes are poorly understood. The purpose of this review is threefold: (1) to describe theoretical expectations for the formation and growth of the earliest black holes within the general paradigm of hierarchical cold dark matter cosmologies, (2) to summarize several relevant recent observations that have implications for the formation of the earliest black holes, and (3) to look into the future and assess the power of forthcoming observations to probe the physics of the first active galactic nuclei.Comment: 39 pages, review for "Supermassive Black Holes in the Distant Universe", Ed. A. J. Barger, Kluwer Academic Publisher
    corecore