48,355 research outputs found

    Amplitude control of quantum interference

    Full text link
    Usually, the oscillations of interference effects are controlled by relative phases. We show that varying the amplitudes of quantum waves, for instance by changing the reflectivity of beam splitters, can also lead to quantum oscillations and even to Bell violations of local realism. We first study theoretically a generalization of the Hong-Ou-Mandel experiment to arbitrary source numbers and beam splitter transmittivity. We then consider a Bell type experiment with two independent sources, and find strong violations of local realism for arbitrarily large source number NN; for small NN, one operator measures essentially the relative phase of the sources and the other their intensities. Since, experimentally, one can measure the parity of the number of atoms in an optical lattice more easily than the number itself, we assume that the detectors measure parity.Comment: 4 pages; 4 figure

    Class of bipartite quantum states satisfying the original Bell inequality

    Full text link
    In a general setting, we introduce a new bipartite state property sufficient for the validity of the perfect correlation form of the original Bell inequality for any three bounded quantum observables. A bipartite quantum state with this property does not necessarily exhibit perfect correlations. The class of bipartite states specified by this property includes both separable and nonseparable states. We prove analytically that, for any dimension d>2, every Werner state, separable or nonseparable, belongs to this class.Comment: 6 pages, v.2: one reference added, the statement on Werner states essentially extended; v.3: details of proofs inserte

    E-Learning Works - Exactly How Well Depends on its Unique Features and Barriers

    Get PDF
    Key Findings: E-learning is comparable to traditional teacher-led classroom instruction in terms of effectiveness. E-learning has specific features that may influence learning: content, immersion, interactivity, and communication. Barriers to e-learning adoption include fraud and cheating, digital divides and their impact on low income and underprepared students, and cost issues

    E-Learning in Postsecondary Education

    Get PDF
    Over the past decade postsecondary education has been moving increasingly from the class room to online. During the fall 2010 term 31 percent of U.S. college students took at least one online course. The primary reasons for the growth of e-learning in the nation\u27s colleges and universities include the desire of those institutions to generate new revenue streams, improve access, and offer students greater scheduling flexibility. Yet the growth of e-learning has been accompanied by a continuing debate about its effectiveness and by the recognition that a number of barriers impede its widespread adoption in higher education

    Self-Assessments of Knowledge: Where Do We Go From Here?

    Get PDF
    [Excerpt] In this paper, we argue that there remain several unanswered questions surrounding self-assessments of knowledge that must be addressed before we can reach a more definitive conclusion on the viability of these measures. The answers to these questions may provide further evidence that self-assessments should not be used as an indicator of learning or they may serve to qualify the conditions under which self-assessments can be used with reasonable confidence. In either case, addressing these issues is critical if work in this area is to influence how researchers and practitioners evaluate trainees’ learning

    Bell's theorem as a signature of nonlocality: a classical counterexample

    Full text link
    For a system composed of two particles Bell's theorem asserts that averages of physical quantities determined from local variables must conform to a family of inequalities. In this work we show that a classical model containing a local probabilistic interaction in the measurement process can lead to a violation of the Bell inequalities. We first introduce two-particle phase-space distributions in classical mechanics constructed to be the analogs of quantum mechanical angular momentum eigenstates. These distributions are then employed in four schemes characterized by different types of detectors measuring the angular momenta. When the model includes an interaction between the detector and the measured particle leading to ensemble dependencies, the relevant Bell inequalities are violated if total angular momentum is required to be conserved. The violation is explained by identifying assumptions made in the derivation of Bell's theorem that are not fulfilled by the model. These assumptions will be argued to be too restrictive to see in the violation of the Bell inequalities a faithful signature of nonlocality.Comment: Extended manuscript. Significant change

    Threshold bounds for noisy bipartite states

    Full text link
    For a nonseparable bipartite quantum state violating the Clauser-Horne-Shimony-Holt (CHSH) inequality, we evaluate amounts of noise breaking the quantum character of its statistical correlations under any generalized quantum measurements of Alice and Bob. Expressed in terms of the reduced states, these new threshold bounds can be easily calculated for any concrete bipartite state. A noisy bipartite state, satisfying the extended CHSH inequality and the perfect correlation form of the original Bell inequality for any quantum observables, neither necessarily admits a local hidden variable model nor exhibits the perfect correlation of outcomes whenever the same quantum observable is measured on both "sides".Comment: 9 pages; v.2: minor editing corrections; to appear in J. Phys. A: Math. Ge

    Causal Quantum Theory and the Collapse Locality Loophole

    Full text link
    Causal quantum theory is an umbrella term for ordinary quantum theory modified by two hypotheses: state vector reduction is a well-defined process, and strict local causality applies. The first of these holds in some versions of Copenhagen quantum theory and need not necessarily imply practically testable deviations from ordinary quantum theory. The second implies that measurement events which are spacelike separated have no non-local correlations. To test this prediction, which sharply differs from standard quantum theory, requires a precise theory of state vector reduction. Formally speaking, any precise version of causal quantum theory defines a local hidden variable theory. However, causal quantum theory is most naturally seen as a variant of standard quantum theory. For that reason it seems a more serious rival to standard quantum theory than local hidden variable models relying on the locality or detector efficiency loopholes. Some plausible versions of causal quantum theory are not refuted by any Bell experiments to date, nor is it obvious that they are inconsistent with other experiments. They evade refutation via a neglected loophole in Bell experiments -- the {\it collapse locality loophole} -- which exists because of the possible time lag between a particle entering a measuring device and a collapse taking place. Fairly definitive tests of causal versus standard quantum theory could be made by observing entangled particles separated by ≈0.1\approx 0.1 light seconds.Comment: Discussion expanded; typos corrected; references adde

    The Relativistically Spinning Charged Sphere

    Full text link
    When the equatorial spin velocity, vv, of a charged conducting sphere approaches cc, the Lorentz force causes a remarkable rearrangement of the total charge qq. Charge of that sign is confined to a narrow equatorial belt at latitudes b⩽3(1−v2/c2)1/2b \leqslant \sqrt{3} (1 - v^2/c^2)^{{1/2}} while charge of the opposite sign occupies most of the sphere's surface. The change in field structure is shown to be a growing contribution of the `magic' electromagnetic field of the charged Kerr-Newman black hole with Newton's G set to zero. The total charge within the narrow equatorial belt grows as (1−v2/c2)−1/4(1-v^2/c^2)^{-{1/4}} and tends to infinity as vv approaches cc. The electromagnetic field, Poynting vector, field angular momentum and field energy are calculated for these configurations. Gyromagnetic ratio, g-factor and electromagnetic mass are illustrated in terms of a 19th Century electron model. Classical models with no spin had the small classical electron radius e2/mc2∼e^2/mc^2\sim a hundredth of the Compton wavelength, but models with spin take that larger size but are so relativistically concentrated to the equator that most of their mass is electromagnetic. The method of images at inverse points of the sphere is shown to extend to charges at points with imaginary co-ordinates.Comment: 15 pages, 1figur

    Unified criteria for multipartite quantum nonlocality

    Full text link
    Wiseman and co-workers (Phys. Rev. Lett. 98, 140402, 2007) proposed a distinction between the nonlocality classes of Bell's nonlocality, steering and entanglement based on whether or not an overseer trusts each party in a bipartite scenario where they are asked to demonstrate entanglement. Here we extend that concept to the multipartite case and derive inequalities that progressively test for those classes of nonlocality, with different thresholds for each level. This framework includes the three classes of nonlocality above in special cases and introduces a family of others.Comment: V2: corrected image display; V3: substantial changes including new proofs, arguments, and result
    • …
    corecore