47,761 research outputs found
From Quasars to Extraordinary N-body Problems
We outline reasoning that led to the current theory of quasars and look at
George Contopoulos's place in the long history of the N-body problem. Following
Newton we find new exactly soluble N-body problems with multibody forces and
give a strange eternally pulsating system that in its other degrees of freedom
reaches statistical equilibrium.Comment: 13 pages, LaTeX with 1 postscript figure included. To appear in
Proceedings of New York Academy of Sciences, 13th Florida Workshop in
Nonlinear Astronomy and Physic
Sea-level change and storm surges in the context of climate change
This paper reviews the latest research in New Zealand surrounding the issues of sea-level rise and extreme sea levels in the context of global warming and variability in the Pacific-wide El Ninoâ Southern Oscillation (ENSO). Past records of climate, sea level (excluding tides) and sea and air temperatures have shown that they are continuously fluctuating over various long-term timescales of years, decades and centuries. This has made it very difficult to determine whether the anthropogenic
effects such as increased levels of âgreenhouseâ gases are having an accelerating effect on global sea levels or an increased incidence of extreme storms. Over the past century, global sea level has risen by 10â25 cm, and is in line with the rise in relative sea level at New Zealandâs main ports of +1.7 mm yr â1. What has become very clear is the need to better understand interannual (year-to-year) and decadal variability in sea-level, as these larger signals of the order of 5â15 cm in annual-mean sea level have a significant âflow-onâ effect on the long-term trend in sea level. The paper describes sea level variability in northern New Zealandâboth long- and short-termâinvolved in assessing the regional trends in sea level. The paper also discusses the relative contributions of tides, barometric pressure and wind set-up in causing extreme sea levels during storm surges. Some recent research also looked at a related questionâIs there any sign of increased storminess, and hence storm surge, in northern New Zealand due to climate change? The paper concludes that, while no one can be completely sure how sea-level and the degree of storminess will respond in the near future, what is clear is that interannual and decadal variability in sea level is
inextricably linked with Pacific-wide ENSO response and longer inter-decadal shifts in the Pacific climate regime, such as the latest shift in 1976
Loophole-free Bell's experiment and two-photon all-versus-nothing violation of local realism
We introduce an all-versus-nothing proof of impossibility of
Einstein-Podolsky-Rosen's local elements of reality for two photons entangled
both in polarization and path degrees of freedom, which leads to a Bell's
inequality where the classical bound is 8 and the quantum prediction is 16. A
simple estimation of the detection efficiency required to close the detection
loophole using this proof gives eta > 0.69. This efficiency is lower than that
required for previous proposals.Comment: REVTeX4, 4 page
Criteria for generalized macroscopic and mesoscopic quantum coherence
We consider macroscopic, mesoscopic and "S-scopic" quantum superpositions of
eigenstates of an observable, and develop some signatures for their existence.
We define the extent, or size of a superposition, with respect to an
observable \hat{x}, as being the range of outcomes of \hat{x} predicted by that
superposition. Such superpositions are referred to as generalized -scopic
superpositions to distinguish them from the extreme superpositions that
superpose only the two states that have a difference in their prediction
for the observable. We also consider generalized -scopic superpositions of
coherent states. We explore the constraints that are placed on the statistics
if we suppose a system to be described by mixtures of superpositions that are
restricted in size. In this way we arrive at experimental criteria that are
sufficient to deduce the existence of a generalized -scopic superposition.
The signatures developed are useful where one is able to demonstrate a degree
of squeezing. We also discuss how the signatures enable a new type of
Einstein-Podolsky-Rosen gedanken experiment.Comment: 15 pages, accepted for publication in Phys. Rev.
Bell nonlocality, signal locality and unpredictability (or What Bohr could have told Einstein at Solvay had he known about Bell experiments)
The 1964 theorem of John Bell shows that no model that reproduces the
predictions of quantum mechanics can simultaneously satisfy the assumptions of
locality and determinism. On the other hand, the assumptions of \emph{signal
locality} plus \emph{predictability} are also sufficient to derive Bell
inequalities. This simple theorem, previously noted but published only
relatively recently by Masanes, Acin and Gisin, has fundamental implications
not entirely appreciated. Firstly, nothing can be concluded about the
ontological assumptions of locality or determinism independently of each other
-- it is possible to reproduce quantum mechanics with deterministic models that
violate locality as well as indeterministic models that satisfy locality. On
the other hand, the operational assumption of signal locality is an empirically
testable (and well-tested) consequence of relativity. Thus Bell inequality
violations imply that we can trust that some events are fundamentally
\emph{unpredictable}, even if we cannot trust that they are indeterministic.
This result grounds the quantum-mechanical prohibition of arbitrarily accurate
predictions on the assumption of no superluminal signalling, regardless of any
postulates of quantum mechanics. It also sheds a new light on an early stage of
the historical debate between Einstein and Bohr.Comment: Substantially modified version; added HMW as co-autho
Hardy's proof of nonlocality in the presence of noise
We extend the validity of Hardy's nonlocality without inequalities proof to
cover the case of special one-parameter classes of non-pure statistical
operators. These mixed states are obtained by mixing the Hardy states with a
completely chaotic noise or with a colored noise and they represent a realistic
description of imperfect preparation processes of (pure) Hardy states in
nonlocality experiments. Within such a framework we are able to exhibit a
precise range of values of the parameter measuring the noise affecting the
non-optimal preparation of an arbitrary Hardy state, for which it is still
possible to put into evidence genuine nonlocal effects. Equivalently, our work
exhibits particular classes of bipartite mixed states whose constituents do not
admit any local and deterministic hidden variable model reproducing the quantum
mechanical predictions.Comment: 9 pages, 2 figures, RevTex, revised versio
Unified criteria for multipartite quantum nonlocality
Wiseman and co-workers (Phys. Rev. Lett. 98, 140402, 2007) proposed a
distinction between the nonlocality classes of Bell's nonlocality, steering and
entanglement based on whether or not an overseer trusts each party in a
bipartite scenario where they are asked to demonstrate entanglement. Here we
extend that concept to the multipartite case and derive inequalities that
progressively test for those classes of nonlocality, with different thresholds
for each level. This framework includes the three classes of nonlocality above
in special cases and introduces a family of others.Comment: V2: corrected image display; V3: substantial changes including new
proofs, arguments, and result
- âŠ