100 research outputs found

    Anomalous flux event in the TESS Sector 43 light curve of the white dwarf photometric standard HZ 4 was caused by a passing asteroid

    Full text link
    Frymire & Ardila (2023) reported an anomalous flux variation in the Transiting Exoplanet Survey Satellite (TESS) Sector 43 light curve of the white dwarf HZ 4. We show that this flux variation was caused by the main-belt asteroid 4382 Stravinsky traversing the nearby TESS pixels, and it is therefore not a cause for concern regarding the continued use of HZ 4 as a photometric standard star.Comment: Accepted for publication in Research Notes of the American Astronomical Societ

    The sdA problem - III. New extremely low-mass white dwarfs and their precursors from Gaia astrometry

    Get PDF
    The physical nature of the sdA stars---cool hydrogen-rich objects with spectroscopic surface gravities intermediate between main sequence and canonical mass white dwarfs---has been elusive since they were found in Sloan Digital Sky Survey Data Release 12 spectra. The population is likely dominated by metal-poor A/F stars in the halo with overestimated surface gravities, with a small contribution of extremely low-mass white dwarfs and their precursors, i.e., ELMs and pre-ELMs. In this work, we seek to identify (pre-)ELMs with radii smaller than is possible for main sequence stars, allowing even for very low metallicity. We analyse 3891 sdAs previously identified in the Sloan Digital Sky Survey using Gaia DR2 data. Our Monte Carlo analysis supports that 90 of these are inconsistent with the main sequence. 37 lie close to or within the canonical white dwarf cooling sequence, while the remaining 53 lie between the canonical white dwarfs and main sequence, which we interpret as likely (pre-)ELMs given their spectral class. Of these, 30 pass more conservative criteria that allow for higher systematic uncertainties on the parallax, as well as an approximate treatment of extinction. Our identifications increase the number of known (pre-)ELMs by up to 50 per cent, demonstrating how Gaia astrometry can reveal members of the compact (pre-)ELM subpopulation of the sdA spectral class.Comment: 13 pages, 19 figures, 1 table. Accepted for publication in MNRA

    Destroying Aliases from the Ground and Space: Super-Nyquist ZZ Cetis in K2 Long Cadence Data

    Full text link
    With typical periods of order 10 minutes, the pulsation signatures of ZZ Ceti variables (pulsating hydrogen-atmosphere white dwarf stars) are severely undersampled by long-cadence (29.42 minutes per exposure) K2 observations. Nyquist aliasing renders the intrinsic frequencies ambiguous, stifling precision asteroseismology. We report the discovery of two new ZZ Cetis in long-cadence K2 data: EPIC 210377280 and EPIC 220274129. Guided by 3-4 nights of follow-up, high-speed (<=30 s) photometry from McDonald Observatory, we recover accurate pulsation frequencies for K2 signals that reflected 4-5 times off the Nyquist with the full precision of over 70 days of monitoring (~0.01 muHz). In turn, the K2 observations enable us to select the correct peaks from the alias structure of the ground-based signals caused by gaps in the observations. We identify at least seven independent pulsation modes in the light curves of each of these stars. For EPIC 220274129, we detect three complete sets of rotationally split ell=1 (dipole mode) triplets, which we use to asteroseismically infer the stellar rotation period of 12.7+/-1.3 hr. We also detect two sub-Nyquist K2 signals that are likely combination (difference) frequencies. We attribute our inability to match some of the K2 signals to the ground-based data to changes in pulsation amplitudes between epochs of observation. Model fits to SOAR spectroscopy place both EPIC 210377280 and EPIC 220274129 near the middle of the ZZ Ceti instability strip, with Teff = 11590+/-200 K and 11810+/-210 K, and masses 0.57+/-0.03 Msun and 0.62+/-0.03 Msun, respectively.Comment: 13 pages, 9 figures, 7 tables; accepted for publication in Ap

    Discovery of pulsations, including possible pressure modes, in two new extremely low mass, He-core white dwarfs

    Full text link
    We report the discovery of the second and third pulsating extremely low mass white dwarfs (WDs), SDSS J111215.82+111745.0 (hereafter J1112) and SDSS J151826.68+065813.2 (hereafter J1518). Both have masses < 0.25 Msun and effective temperatures below 10,000 K, establishing these putatively He-core WDs as a cooler class of pulsating hydrogen-atmosphere WDs (DAVs, or ZZ Ceti stars). The short-period pulsations evidenced in the light curve of J1112 may also represent the first observation of acoustic (p-mode) pulsations in any WD, which provide an exciting opportunity to probe this WD in a complimentary way compared to the long-period g-modes also present. J1112 is a Teff = 9590 +/- 140 K and log(g) = 6.36 +/- 0.06 WD. The star displays sinusoidal variability at five distinct periodicities between 1792-2855 s. In this star we also see short-period variability, strongest at 134.3 s, well short of expected g-modes for such a low-mass WD. The other new pulsating WD, J1518, is a Teff = 9900 +/- 140 K and log(g) = 6.80 +/- 0.05 WD. The light curve of J1518 is highly non-sinusoidal, with at least seven significant periods between 1335-3848 s. Consistent with the expectation that ELM WDs must be formed in binaries, these two new pulsating He-core WDs, in addition to the prototype SDSS J184037.78+642312.3, have close companions. However, the observed variability is inconsistent with tidally induced pulsations and is so far best explained by the same hydrogen partial-ionization driving mechanism at work in classic C/O-core ZZ Ceti stars.Comment: 9 pages, 5 figures, accepted to The Astrophysical Journa
    • …
    corecore