3,520 research outputs found

    Six DOF Motion Estimation for Teleoperated Flexible Endoscopes Using Optical Flow: A Comparative Study

    Get PDF
    Colorectal cancer is one of the leading causes of cancer-related deaths worldwide, although it can be effectively treated if detected early. Teleoperated flexible endoscopes are an emerging technology to promote participation in these preventive screenings. Real-time pose estimation is therefore essential to enable feedback to the robotic endoscope's control system. Vision-based endoscope localization approaches are a promising avenue, since they do not require extra sensors on board the endoscopes. In this work, we compare several state-of-the-art algorithms for computing the image motion (optical flow), which is then used with a supervised learning strategy to provide an accurate estimate of the 6 degree of freedom endoscope motion. The method is validated using a robotically actuated endoscope in a human colon simulator, and represents a preliminary effort towards testing with clinical video data

    Vacuum phototriodes for the CMS electromagnetic calorimeter endcap

    Get PDF
    The measurement of scintillation light from the lead tungstate crystals of the Compact Muon Solenoid (CMS) electromagnetic calorimeter (ECAL) poses a substantial technical challenge, particularly in the endcap regions, where the radiation levels are highest. The photodetectors must be fast, sensitive, radiationhard, and operate with significant internal gain in a magnetic field of 4 Tesla. The measured performance characteristics of the first batches of series production vacuum phototriodes (VPT), developed to satisfy the needs of CMS, will be described

    Gradient flux measurements of sea–air DMS transfer during the Surface Ocean Aerosol Production (SOAP) experiment

    Get PDF
    Direct measurements of marine dimethylsulfide (DMS) fluxes are sparse, particularly in the Southern Ocean. The Surface Ocean Aerosol Production (SOAP) voyage in February–March 2012 examined the distribution and flux of DMS in a biologically active frontal system in the southwest Pacific Ocean. Three distinct phytoplankton blooms were studied with oceanic DMS concentrations as high as 25 nmol L−1. Measurements of DMS fluxes were made using two independent methods: the eddy covariance (EC) technique using atmospheric pressure chemical ionization–mass spectrometry (API-CIMS) and the gradient flux (GF) technique from an autonomous catamaran platform. Catamaran flux measurements are relatively unaffected by airflow distortion and are made close to the water surface, where gas gradients are largest. Flux measurements were complemented by near-surface hydrographic measurements to elucidate physical factors influencing DMS emission. Individual DMS fluxes derived by EC showed significant scatter and, at times, consistent departures from the Coupled Ocean–Atmosphere Response Experiment gas transfer algorithm (COAREG). A direct comparison between the two flux methods was carried out to separate instrumental effects from environmental effects and showed good agreement with a regression slope of 0.96 (r2 = 0.89). A period of abnormal downward atmospheric heat flux enhanced near-surface ocean stratification and reduced turbulent exchange, during which GF and EC transfer velocities showed good agreement but modelled COAREG values were significantly higher. The transfer velocity derived from near-surface ocean turbulence measurements on a spar buoy compared well with the COAREG model in general but showed less variation. This first direct comparison between EC and GF fluxes of DMS provides confidence in compilation of flux estimates from both techniques, as well as in the stable periods when the observations are not well predicted by the COAREG model

    Methanethiol, dimethyl sulfide and acetone over biologically productive waters in the southwest Pacific Ocean

    Get PDF
    Atmospheric methanethiol (MeSHa), dimethyl sulfide (DMSa) and acetone (acetonea) were measured over biologically productive frontal waters in the remote southwest Pacific Ocean in summertime 2012 during the Surface Ocean Aerosol Production (SOAP) voyage. MeSHa mixing ratios varied from below the detection limit (<10ppt) up to 65ppt and were 3%–36% of parallel DMSa mixing ratios. MeSHa and DMSa were correlated over the voyage(R2=0.3,slope=0.07)with a stronger correlation over a coccolithophore-dominated phytoplankton bloom (R2= 0.5, slope 0.13). The diurnal cycle for MeSHa shows similar behaviour to DMSa with mixing ratios varying by a factor of ∼2 according to time of day with the minimum levels of both MeSHa and DMSa occurring at around 16:00LT (local time, all times in this paper are in local time). A positive flux of MeSH out of the ocean was calculated for three different nights and ranged from 3.5 to 5.8µmolm−2 d−1, corresponding to 14%–24% of the DMS flux (MeSH/(MeSH+DMS)). Spearman rank correlations with ocean biogeochemical parameters showed a moderate to-strong positive, highly significant relationship between both MeSHa and DMSa with seawater DMS (DMSsw) and a moderate correlation with total dimethylsulfoniopropionate (total DMSP). A positive correlation of acetonea with water temperature and negative correlation with nutrient concentrations are consistent with reports of acetone production in warmer subtropical waters. Positive correlations of acetonea with cryptophyte and eukaryotic phytoplankton numbers, and high-molecular-weight sugars and chromophoric dissolved organic matter (CDOM), suggest an organic source. This work points to a significant ocean source of MeSH, highlighting the need for further studies into the distribution and fate of MeSH, and it suggests links between atmospheric acetone levels and biogeochemistry over the midlatitude ocean. In addition, an intercalibration of DMSa at ambient levels using three independently calibrated instruments showed ∼15%–25% higher mixing ratios from an atmospheric pressure ionisation chemical ionisation mass spectrometer (mesoCIMS) compared to a gas chromatograph with a sulfurchemiluminescencedetector(GC-SCD)and proton transfer reaction mass spectrometer (PTR-MS). Some differences were attributed to the DMSa gradient above the sea surface and differing approaches of integrated versus discrete measurements. Remaining discrepancies were likely due to different calibrationscales,suggesting that further investigation of the stability and/or absolute calibration of DMSstandards used at sea is warranted
    corecore