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generated datasets can differ significantly from a colon

simulator or human colon [6], and none of these approaches

are able to provide quantitative information about the full 6

degree of freedom (DOF) change of pose of the endoscope

tip. Additionally, many of these methods assume that a focus-

of-expansion can be detected in the image, which might not

happen in the frequent case of rotational motions of the

endoscope.

B. Original Contribution and Organization

The original contribution of this paper is to compare

the effects of several state-of-the-art optical flow estimation

algorithms on their capability to best describe the movement

between images of the colon typically observed during a

colonoscopy. The efficacy of these optical flow measure-

ments resulting from each of these methods is measured by

the accuracy of a supervised learning localization strategy

that maps these image variations to 6 DOF changes in pose

of the endoscope.

Applying artificial neural networks (ANN) to derive the

change in pose of robotic endoscopes has been proposed

[22]. In this study, different sources of illumination (white

light and narrow band) and image partitioning (grid-based

and lumen-centered) were compared to investigate the com-

bination providing the strongest features to drive the ANN.

A standard Lucas-Kanade (LK) method was adopted to

compute the sparse optical flow. In this paper, we build upon

this previous work by providing an extensive comparison

of several of the most important optical flow computation

methods.

The paper is organized as follows: Sect. II presents an

overview of the optical flow methods adopted in our work,

together with a description of their major advantages and

disadvantages. Sect. III describes the supervised-learning

localization strategy, while Sect. IV presents both the experi-

mental setup and the results of the comparison between each

optical flow method. Finally, Sect. V highlights the major

conclusions and describes future work.

II. OVERVIEW OF OPTICAL FLOW COMPUTATION

In this section, we present an overall description of the

state-of-the-art algorithms we adopted for the computation

of the image motion (optical flow) across consecutive frames

of an endoscopic video. Since a comparison between all the

optical flow algorithms designed over the past decades is

unfeasible in this conference paper, we decided to focus on

a subset of representative methods. In particular, we selected

those methods that are most popular and with important

peculiar features, such as invariance to illumination or rapid

camera motion. The mathematical and implementation de-

tails for each method are outside the scope of this work and

can be obtained from the references provided below.

A. Lucas-Kanade (LK) based optical flow

We adopted the Lucas-Kanade method [23] for computing

the optical flow between two frames of an endoscopic video.

LK estimates the image motion of image templates across

(a) It−∆t (b) It

(c) LK (d) SURF

(e) SIFT (f) dHMA

Fig. 1. Representative Optical Flows: (a)-(b) Frames It−∆t and It; (c)
Lucas-Kanade (LK); (d) Scale-invariant (SURF); (e) Scale-invariant (SIFT);
(f) Dense Hierarchical Multi-Affine (dHMA).

two consecutive frames, It−∆t and It (cf., Fig. 1(a)-1(b)),

of an endoscopic video. As commonly done in the literature,

we centered each template at a Shi-Tomasi feature [24]. We

adopted a pyramidal multi-resolution implementation of the

LK method [25] that provides a more reliable estimation

when compared to traditional LK implementations.

Figure 1(c) illustrates an example of the optical flow

vectors (blue) computed by LK. Each flow vector is centered

at a Shi-Tomasi corner. Because of the presence of many

textureless areas and image blurs, the resulting LK-based

optical flow is usually very sparse, since only few Shi-

Tomasi features are detected in these areas. There are two

key assumptions in the LK method: the first one assumes

brightness constancy over time of the two frames, and

the second assumes small motion of each template across

consecutive frames, allowing filtering of noisy flow vectors

with very large magnitude (outliers).

B. Scale-Invariant optical flow

In order to robustly estimate the optical flow in the case

of large endoscope motion and changes in illumination, we

adopted two scale-invariant features: SIFT (Scale-Invariant

Feature Transform) [26] and SURF (Speeded-Up Robust

Features). These features are extracted and matched in two

consecutive frames to find the optical flow. We decided to

focus on these two algorithms because of their proved high-
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ing other descriptor for representing the optical flow, and

finding the optimal method for mapping the optical flow

to the change in pose of the endoscope. Furthermore, more

extensive analysis needs to be done to quantify the sensitivity

of the ANNs to the size of the training set, as well as the

robustness to optical flow ambiguities caused by different

motions with similar optical flow. Additionally, in-vivo trials

will be performed in order to analyze the performance of

the algorithm on human colon tissue. From this, the impact

of haustal contractions and small movements of the colon

can be assessed. The performance of our algorithm indicates

that pose detection via supervised learning of optical flow is

a feasible feedback mechanism for implementing closed-loop

control of teleoperated flexible endoscopes.
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