441 research outputs found

    The Role of Magmatism in Hydrocarbon Generation in Sedimented Rifts: a Nd Isotope Perspective from Mid-Cretaceous Methane-Seep Deposits of the Basque-Cantabrian Basin, Spain

    Get PDF
    Studies on the involvement of intrusive magmatism in hydrocarbon generation within sedimentary basins have gained momentum owing to increasing appraisal of the role that such processes may play in controlling global carbon cycle perturbations, and the exploration potential of the volcanic sedimentary basins. Nevertheless, for many areas the causal link between the intrusions and surrounding hydrocarbon systems remains disputed, encouraging a search for methods that could aid in identifying different hydrocarbon sources. Here, we have performed a multi-proxy geochemical study of the middle Cretaceous methane-seep deposits of the Basque-Cantabrian Basin, an early-stage, peri-cratonic rift marking the Mesozoic opening of the Bay of Biscay. Infilled by a thick sedimentary succession intruded by shallow-level igneous bodies, the basin shares analogies with modern young, sedimented rifts that sustain hydrocarbon seepage. We have applied a novel approach that uses the Nd isotope composition of the seep deposits to constrain the relationship between hydrocarbon seepage and igneous activity, and to explore the general potential of Nd isotopes to trace magmatic-influenced fluids in volcanic sedimentary basins. The Nd isotope data have been combined with rare earth element analyses and carbon and oxygen isotope measurements, providing broad insight into the former composition of the seeping fluids. For three out of four investigated seeps, the Nd isotope ratios observed in authigenic seep carbonates include signatures markedly more radiogenic than that reconstructed for background seawater-derived pore waters. The level of this Nd-143-enrichment varies both between and within individual deposits, reflecting spatial and temporal differences in fluid composition typical of seep-related environments. The radiogenic Nd isotope signals provide evidence of subseafloor interactions between the seeping fluids and mafic igneous materials, supporting the model of an igneous control on the mid-Cretaceous methane expulsion in the Basque-Cantabrian Basin. The thermogenic origin of the methane is in accord with the moderately negative delta C-13 values and paragenetic successions observed in the studied seep carbonates. For a single deposit, its relatively unradiogenic Nd isotope composition can be attributed to the smallest size and shallowest emplacement depth of the underlying intrusion, likely resulting in a short-lived character and limited hydrocarbon-generation potential of the associated contact metamorphism. The study demonstrates that Nd isotope analyses of seep carbonates offer a tool in disentangling methane fluxes from different organic matter alteration pathways for the numerous, both fossil and modern sedimented rifts for which the involvement of various methane sources remains insufficiently understood.This work was supported by the National Science Centre, Poland (grant No. 2016/23/D/ST10/00444; to MJ) , and the Eusko Jaurlaritza (Ikerketa Taldeak IT930-16) and the Spanish State Research Agency (project PID2019-105670GB-I00/AEI/10.13039/501100011033; both to LMA

    Longitudinal changes of blood parameters and weight in inoperable stage III NSCLC patients treated with concurrent chemoradiotherapy followed by maintenance treatment with durvalumab

    Get PDF
    Background Investigating dynamic changes in blood-parameters and weight in patients with locally advanced non-small cell lung cancer (NSCLC) receiving durvalumab maintenance therapy after chemoradiotherapy (cCRT). Laboratory outcomes were determined based on the number of durvalumab administrations received. Methods Twenty-two patients completed platinum-based cCRT followed by maintenance treatment with durvalumab. Different parameters such as hemoglobin (Hb), leukocytes, Lactate dehydrogenase (LDH), C-reactive protein (CRP), body weight and albumin were analyzed before cCRT, after cCRT, 3, 6, 9 and 12 months after starting durvalumab maintenance. Results Sixteen (72.7%) patients were male; twelve (54.5%) and fifteen (68.2%) patients had non-squamous histology and Union for International Cancer Control (UICC) stage IIIB-C disease, respectively. Median follow-up time was 24.4 months; 12- and 18-months- progression-free and overall-survival rates were 55.0% and 45.0 as well as 90.2 and 85.0%, respectively. During maintenance treatment Hb increased by 1.93 mg/dl (17.53%) after 9 months ( p < 0.001) and 2.02 mg/dl (18.46%) after 12 months compared to the start of durvalumab ( p < 0.001). LDH decreased by 29.86 U/l (− 11.74%) after 3 months ( p = 0.022). Receipt of at least 12 cycles of durvalumab was beneficial in terms of Hb-recovery (Hb 6 months: 12.64 vs. 10.86 [mg/dl]; Hb 9 months: 13.33 vs 11.74 [mg/dl]; ( p = 0.03)). Median weight change [kilogram (kg)] was + 6.06% (range: − 8.89 − + 18.75%) after 12 months. The number of durvalumab cycles significantly correlated with total weight gain [kg] (Spearman-Rho-correlation: r = 0.502*). Conclusion In the investigated cohort, no severe hematologic toxicity occurred by laboratory blood tests within 1 year of durvalumab maintenance therapy after cCRT for unresectable stage III NSCLC. Receiving at least 12 cycles of durvalumab appears to have a significant effect on recovery of hemoglobin levels and body weight

    Aptamers: a novel targeted theranostic platform for pancreatic ductal adenocarcinoma

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is an extremely challenging disease with a high mortality rate and a short overall survival time. The poor prognosis can be explained by aggressive tumor growth, late diagnosis, and therapy resistance. Consistent efforts have been made focusing on early tumor detection and novel drug development. Various strategies aim at increasing target specificity or local enrichment of chemotherapeutics as well as imaging agents in tumor tissue. Aptamers have the potential to provide early detection and permit anti-cancer therapy with significantly reduced side effects. These molecules are in-vitro selected single-stranded oligonucleotides that form stable three-dimensional structures. They are capable of binding to a variety of molecular targets with high affinity and specificity. Several properties such as high binding affinity, the in vitro chemical process of selection, a variety of chemical modifications of molecular platforms for diverse function, non-immunoreactivity, modification of bioavailability, and manipulation of pharmacokinetics make aptamers attractive targets compared to conventional cell-specific ligands. To explore the potential of aptamers for early diagnosis and targeted therapy of PDAC - as single agents and in combination with radiotherapy - we summarize the generation process of aptamers and their application as biosensors, biomarker detection tools, targeted imaging tracers, and drug-delivery carriers. We are furthermore discussing the current implementation aptamers in clinical trials, their limitations and possible future utilization

    Impact of Radiotherapy, Chemotherapy and Surgery in Multimodal Treatment of Locally Advanced Esophageal Cancer

    Get PDF
    Objectives: It was the aim of this study to assess our institutional experience with definitive chemoradiation (CRT) versus induction chemotherapy followed by CRT with or without surgery (C-CRT/S) in esophageal cancer. Methods: We retrospectively analyzed 129 institutional patients with locally advanced esophageal cancer who had been treated by either CRT in analogy to the RTOG 8501 trial (n = 78) or C-CRT/S (n = 51). Results: The median, 2-and 5-year overall survival (OS) of the entire collective was 17.6 months, 42 and 24%, respectively, without a significant difference between the CRT and C-CRT/S groups. In C-CRT/S patients, surgery statistically improved the locoregional control (LRC) rates (2-year LRC 73.6 vs. 21.2%; p = 0.003); however, this was translated only into a trend towards improved OS (p = 0.084). The impact of escalated radiation doses (>= 60.0 vs. <60.0 Gy) on LRC was detectable only in T1-3 N0-1 M0 patients of the CRT group (2-year LRC 77.8 vs. 42.3%; p = 0.036). Conclusion: Definitive CRT and a trimodality approach including surgery (C-CRT/S) had a comparable outcome in this unselected patient collective. Surgery and higher radiation doses improve LRC rates in subgroups of patients, respectively, but without effect on OS. Copyright (C) 2012 S. Karger AG, Base

    MR-guided adaptive stereotactic body radiotherapy (SBRT) of primary tumor for pain control in metastatic pancreatic ductal adenocarcinoma (mPDAC): an open randomized, multicentric, parallel group clinical trial (MASPAC)

    Full text link
    BACKGROUND Pain symptoms in the upper abdomen and back are prevalent in 80% of patients with metastatic pancreatic ductal adenocarcinoma (mPDAC), where the current standard treatment is a systemic therapy consisting of at least doublet-chemotherapy for fit patients. Palliative low-dose radiotherapy is a well-established local treatment option but there is some evidence for a better and longer pain response after a dose-intensified radiotherapy of the primary pancreatic cancer (pPCa). Stereotactic body radiation therapy (SBRT) can deliver high radiation doses in few fractions, therefore reducing chemotherapy-free intervals. However, prospective data on pain control after SBRT of pPCa is very limited. Therefore, we aim to investigate the impact of SBRT on pain control in patients with mPDAC in a prospective trial. METHODS This is a prospective, double-arm, randomized controlled, international multicenter study testing the added benefit of MR-guided adaptive SBRT of the pPca embedded between standard of care-chemotherapy (SoC-CT) cycles for pain control and prevention of pain in patients with mPDAC. 92 patients with histologically proven mPDAC and at least stable disease after initial 8 weeks of SoC-CT will be eligible for the trial and 1:1 randomized in 3 centers in Germany and Switzerland to either experimental arm A, receiving MR-guided SBRT of the pPCa with 5 × 6.6 Gy at 80% isodose with continuation of SoC-CT thereafter, or control arm B, continuing SoC-CT without SBRT. Daily MR-guided plan adaptation intents to achieve good target coverage, while simultaneously minimizing dose to organs at risk. Patients will be followed up for minimum 6 and maximum of 18 months. The primary endpoint of the study is the "mean cumulative pain index" rated every 4 weeks until death or end of study using numeric rating scale. DISCUSSION An adequate long-term control of pain symptoms in patients with mPDAC is an unmet clinical need. Despite improvements in systemic treatment, local complications due to pPCa remain a clinical challenge. We hypothesize that patients with mPDAC will benefit from a local treatment of the pPCa by MR-guided SBRT in terms of a durable pain control with a simultaneously favorable safe toxicity profile translating into an improvement of quality-of-life. TRIAL REGISTRATION German Registry for Clinical Trials (DRKS): DRKS00025801. Meanwhile the study is also registered at ClinicalTrials.gov with the Identifier: NCT05114213

    MR-guided adaptive stereotactic body radiotherapy (SBRT) of primary tumor for pain control in metastatic pancreatic ductal adenocarcinoma (mPDAC): an open randomized, multicentric, parallel group clinical trial (MASPAC)

    Get PDF
    BACKGROUND: Pain symptoms in the upper abdomen and back are prevalent in 80% of patients with metastatic pancreatic ductal adenocarcinoma (mPDAC), where the current standard treatment is a systemic therapy consisting of at least doublet-chemotherapy for fit patients. Palliative low-dose radiotherapy is a well-established local treatment option but there is some evidence for a better and longer pain response after a dose-intensified radiotherapy of the primary pancreatic cancer (pPCa). Stereotactic body radiation therapy (SBRT) can deliver high radiation doses in few fractions, therefore reducing chemotherapy-free intervals. However, prospective data on pain control after SBRT of pPCa is very limited. Therefore, we aim to investigate the impact of SBRT on pain control in patients with mPDAC in a prospective trial. METHODS: This is a prospective, double-arm, randomized controlled, international multicenter study testing the added benefit of MR-guided adaptive SBRT of the pPca embedded between standard of care-chemotherapy (SoC-CT) cycles for pain control and prevention of pain in patients with mPDAC. 92 patients with histologically proven mPDAC and at least stable disease after initial 8 weeks of SoC-CT will be eligible for the trial and 1:1 randomized in 3 centers in Germany and Switzerland to either experimental arm A, receiving MR-guided SBRT of the pPCa with 5 × 6.6 Gy at 80% isodose with continuation of SoC-CT thereafter, or control arm B, continuing SoC-CT without SBRT. Daily MR-guided plan adaptation intents to achieve good target coverage, while simultaneously minimizing dose to organs at risk. Patients will be followed up for minimum 6 and maximum of 18 months. The primary endpoint of the study is the “mean cumulative pain index” rated every 4 weeks until death or end of study using numeric rating scale. DISCUSSION: An adequate long-term control of pain symptoms in patients with mPDAC is an unmet clinical need. Despite improvements in systemic treatment, local complications due to pPCa remain a clinical challenge. We hypothesize that patients with mPDAC will benefit from a local treatment of the pPCa by MR-guided SBRT in terms of a durable pain control with a simultaneously favorable safe toxicity profile translating into an improvement of quality-of-life. TRIAL REGISTRATION: German Registry for Clinical Trials (DRKS): DRKS00025801. Meanwhile the study is also registered at ClinicalTrials.gov with the Identifier: NCT05114213

    ESTRO-EANO guideline on target delineation and radiotherapy details for glioblastoma

    Full text link
    BACKGROUND AND PURPOSE Target delineation in glioblastoma is still a matter of extensive research and debate. This guideline aims to update the existing joint European consensus on delineation of the clinical target volume (CTV) in adult glioblastoma patients. MATERIAL AND METHODS The ESTRO Guidelines Committee identified 14 European experts in close interaction with the ESTRO clinical committee and EANO who discussed and analysed the body of evidence concerning contemporary glioblastoma target delineation, then took part in a two-step modified Delphi process to address open questions. RESULTS Several key issues were identified and are discussed including i) pre-treatment steps and immobilisation, ii) target delineation and the use of standard and novel imaging techniques, and iii) technical aspects of treatment including planning techniques and fractionation. Based on the EORTC recommendation focusing on the resection cavity and residual enhancing regions on T1-sequences with the addition of a reduced 15 mm margin, special situations are presented with corresponding potential adaptations depending on the specific clinical situation. CONCLUSIONS The EORTC consensus recommends a single clinical target volume definition based on postoperative contrast-enhanced T1 abnormalities, using isotropic margins without the need to cone down. A PTV margin based on the individual mask system and IGRT procedures available is advised; this should usually be no greater than 3 mm when using IGRT

    MRI-based contrast clearance analysis shows high differentiation accuracy between radiation-induced reactions and progressive disease after cranial radiotherapy

    Get PDF
    BACKGROUND: Pseudoprogression (PsP) or radiation necrosis (RN) may frequently occur after cranial radiotherapy and show a similar imaging pattern compared with progressive disease (PD). We aimed to evaluate the diagnostic accuracy of magnetic resonance imaging-based contrast clearance analysis (CCA) in this clinical setting. PATIENTS AND METHODS: Patients with equivocal imaging findings after cranial radiotherapy were consecutively included into this monocentric prospective study. CCA was carried out by software-based automated subtraction of imaging features in late versus early T1-weighted sequences after contrast agent application. Two experienced neuroradiologists evaluated CCA with respect to PsP/RN and PD being blinded for histological findings. The radiological assessment was compared with the histopathological results, and its accuracy was calculated statistically. RESULTS: A total of 33 patients were included; 16 (48.5%) were treated because of a primary brain tumor (BT), and 17 (51.1%) because of a secondary BT. In one patient, CCA was technically infeasible. The accuracy of CCA in predicting the histological result was 0.84 [95% confidence interval (CI) 0.67-0.95; one-sided P = 0.051; n = 32]. Sensitivity and specificity of CCA were 0.93 (95% CI 0.66-1.00) and 0.78 (95% CI 0.52-0.94), respectively. The accuracy in patients with secondary BTs was 0.94 (95% CI 0.71-1.00) and nonsignificantly higher compared with patients with primary BT with an accuracy of 0.73 (95% CI 0.45-0.92), P = 0.16. CONCLUSIONS: In this study, CCA was a highly accurate, easy, and helpful method for distinguishing PsP or RN from PD after cranial radiotherapy, especially in patients with secondary tumors after radiosurgical treatment
    • 

    corecore