547 research outputs found

    N=4 superconformal Ward identities for correlation functions

    Full text link
    In this paper we study the four-point correlation function of the energy-momentum supermultiplet in theories with N=4 superconformal symmetry in four dimensions. We present a compact form of all component correlators as an invariant of a particular abelian subalgebra of the N=4 superconformal algebra. This invariant is unique up to a single function of the conformal cross-ratios which is fixed by comparison with the correlation function of the lowest half-BPS scalar operators. Our analysis is independent of the dynamics of a specific theory, in particular it is valid in N=4 super Yang-Mills theory for any value of the coupling constant. We discuss in great detail a subclass of component correlators, which is a crucial ingredient for the recent study of charge-flow correlations in conformal field theories. We compute the latter explicitly and elucidate the origin of the interesting relations among different types of flow correlations previously observed in arXiv:1309.1424.Comment: 41 page

    Superconformal constraints for QCD conformal anomalies

    Get PDF
    Anomalous superconformal Ward identities and commutator algebra in N = 1 super-Yang-Mills theory give rise to constraints between the QCD special conformal anomalies of conformal composite operators. We evaluate the superconformal anomalies that appear in the product of renormalized conformal operators and the trace anomaly in the supersymmetric spinor current and check the constraints at one-loop order. In this way we prove the universality of QCD conformal anomalies, which define the non-diagonal part of the anomalous dimension matrix responsible for scaling violations of exclusive QCD amplitudes at the next-to-leading order.Comment: 30 pages, 2 figures, LaTe

    Event shapes in N=4 super-Yang-Mills theory

    Get PDF
    We study event shapes in N=4 SYM describing the angular distribution of energy and R-charge in the final states created by the simplest half-BPS scalar operator. Applying the approach developed in the companion paper arXiv:1309.0769, we compute these observables using the correlation functions of certain components of the N=4 stress-tensor supermultiplet: the half-BPS operator itself, the R-symmetry current and the stress tensor. We present master formulas for the all-order event shapes as convolutions of the Mellin amplitude defining the correlation function of the half-BPS operators, with a coupling-independent kernel determined by the choice of the observable. We find remarkably simple relations between various event shapes following from N=4 superconformal symmetry. We perform thorough checks at leading order in the weak coupling expansion and show perfect agreement with the conventional calculations based on amplitude techniques. We extend our results to strong coupling using the correlation function of half-BPS operators obtained from the AdS/CFT correspondence.Comment: 52 pages, 6 figures; v2: typos correcte

    Energy-energy correlations in N=4 SYM

    Full text link
    We present a new approach to computing energy-energy correlations in gauge theories that exploits their relation to correlation functions and bypasses the use of scattering amplitudes. We illustrate its power by calculating energy-energy correlations in the maximally supersymmetric Yang-Mills theory (N=4 SYM) in the next-to-leading order approximation.Comment: 5 page

    From correlation functions to event shapes

    Get PDF
    We present a new approach to computing event shape distributions or, more precisely, charge flow correlations in a generic conformal field theory (CFT). These infrared finite observables are familiar from collider physics studies and describe the angular distribution of global charges in outgoing radiation created from the vacuum by some source. The charge flow correlations can be expressed in terms of Wightman correlation functions in a certain limit. We explain how to compute these quantities starting from their Euclidean analogues by means of a non-trivial analytic continuation which, in the framework of CFT, can elegantly be performed in Mellin space. The relation between the charge flow correlations and Euclidean correlation functions can be reformulated directly in configuration space, bypassing the Mellin representation, as a certain Lorentzian double discontinuity of the correlation function integrated along the cuts. We illustrate the general formalism in N=4 SYM, making use of the well-known results on the four-point correlation function of half-BPS scalar operators. We compute the double scalar flow correlation in N=4 SYM, at weak and strong coupling and show that it agrees with known results obtained by different techniques. One of the remarkable features of the N=4 theory is that the scalar and energy flow correlations are proportional to each other. Imposing natural physical conditions on the energy flow correlations (finiteness, positivity and regularity), we formulate additional constraints on the four-point correlation functions in N=4 SYM that should be valid at any coupling and away from the planar limit.Comment: 40 pages, 1 figure; v2: typos correcte

    A detailed QCD analysis of twist-3 effects in DVCS observables

    Full text link
    In this paper I present a detailed QCD analysis of twist-3 effects in the Wandzura-Wilczek (WW) approximation in deeply virtual Compton scattering (DVCS) observables for various kinematical settings, representing the HERA, HERMES, CLAS and the planned EIC (electron-ion-collider) experiments. I find that the twist-3 effects in the WW approximation are almost always negligible at collider energies but can be large for low Q^2 and smaller x_bj in observables for the lower energy, fixed target experiments directly sensitive to the real part of DVCS amplitudes like the charge asymmetry (CA). Conclusions are then drawn about the reliability of extracting twist-2 generalized parton distributions (GPDs) from experimental data and a first, phenomenological, parameterization of the LO and NLO twist-2 GPD HH, describing all the currently available DVCS data within the experimental errors is given.Comment: 18 pages, 21 figures, uses Revtex4, final version to be published in PRD, minor revisions due to referee suggestion

    Integrability in Yang-Mills theory on the light cone beyond leading order

    Full text link
    The one-loop dilatation operator in Yang-Mills theory possesses a hidden integrability symmetry in the sector of maximal helicity Wilson operators. We calculate two-loop corrections to the dilatation operator and demonstrate that while integrability is broken for matter in the fundamental representation of the SU(3) gauge group, for the adjoint SU(N_c) matter it survives the conformal symmetry breaking and persists in supersymmetric N=1, N=2 and N=4 Yang-Mills theories.Comment: 4 pages, 2 figure

    Invariant Measures and Convergence for Cellular Automaton 184 and Related Processes

    Full text link
    For a class of one-dimensional cellular automata, we review and complete the characterization of the invariant measures (in particular, all invariant phase separation measures), the rate of convergence to equilibrium, and the derivation of the hydrodynamic limit. The most widely known representatives of this class of automata are: Automaton 184 from the classification of S. Wolfram, an annihilating particle system and a surface growth model.Comment: 18 page
    • …
    corecore