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Abstract

We study event shapes in N = 4 SYM describing the angular distribution of energy and R-charge in
the final states created by the simplest half-BPS scalar operator. Applying the approach developed in the
companion paper arXiv:1309.0769, we compute these observables using the correlation functions of certain
components of the N = 4 stress-tensor supermultiplet: the half-BPS operator itself, the R-symmetry current
and the stress tensor. We present master formulas for the all-order event shapes as convolutions of the Mellin
amplitude defining the correlation function of the half-BPS operators, with a coupling-independent kernel
determined by the choice of the observable. We find remarkably simple relations between various event
shapes following from N = 4 superconformal symmetry. We perform thorough checks at leading order
in the weak coupling expansion and show perfect agreement with the conventional calculations based on
amplitude techniques. We extend our results to strong coupling using the correlation function of half-BPS
operators obtained from the AdS/CFT correspondence.
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Fig. 1. Final states in e+e− annihilation in QCD. The electron and positron annihilate to produce a virtual photon γ ∗(q)

that decays into an arbitrary number of quarks and gluons which go through a hadronization process (shaded rectangle)
to become hadrons (double lines). The dot denotes the electromagnetic QCD current.

1. Introduction

Recently, significant progress has been made in understanding properties of correlation func-
tions and scattering amplitudes in maximally supersymmetric Yang–Mills theory (N = 4 SYM).
There is growing evidence that the theory possesses a hidden integrability symmetry which is
powerful enough to determine both quantities for an arbitrary value of the coupling constant, at
least in the planar limit. Correlation functions and scattering amplitudes have different properties
and carry complementary information about the dynamics of N = 4 SYM. Unlike the correla-
tion functions, the on-shell scattering amplitudes are not well defined in four dimensions due to
infrared (IR) singularities and, hence, they require regularization. This introduces a dependence
on unphysical parameters (such as the dimensional regularization scale playing the role of the IR
regulator) which break (super)conformal symmetry. At the same time, the correlation functions
of protected (half-BPS) operators are well-defined functions of the coordinates of the operators
in four-dimensional N = 4 SYM. As a consequence, they do not require regularization and enjoy
the full unbroken N = 4 superconformal symmetry.

The main goal of this paper is to study a different class of gauge invariant quantities in N =
4 SYM which admit two equivalent representations: They are given by integrated correlation
functions and, at the same time, they can be expressed as (infinite) sums over absolute squares
of scattering amplitudes. These quantities are closely related to various observables which have
been thoroughly studied in the context of QCD for the final states produced in e+e− annihilation
[1–3]. In the latter case, the electron and positron annihilate to produce a virtual photon, which
in turn creates an energetic quark–antiquark pair from the vacuum. The outgoing particles move
away from each other and emit a lot of radiation before fragmenting into hadrons (see Fig. 1).
The distribution of particles in the final state of e+e− annihilation can be characterized by a
set of observables, the so-called event shapes (see, e.g., [2]). One of them, the energy–energy
correlation [4], plays a distinct role in our analysis.

Needless to say, QCD is quite different from N = 4 SYM. Due to the presence of a mass
gap in the hadron spectrum, QCD scattering amplitudes are free from IR singularities but their
calculation is still impossible due to our inability to control the confining (hadronization) regime
in the theory. A remarkable property of the event shapes is that, for asymptotically large values
of the center-of-mass energy q2, the hadronization corrections become negligible (for a review
see, e.g., [5]). As a consequence, the event shapes can be approximated at high energy by a
perturbative QCD expansion. It is in this context that N = 4 SYM arises as a simpler model of



208 A.V. Belitsky et al. / Nuclear Physics B 884 (2014) 206–256
gauge dynamics in four space–time dimensions. It shares many features with perturbative QCD,
on the one hand, and can be studied analytically using its symmetries, on the other. In particular,
the AdS/CFT correspondence opens up a possibility to explore the previously unreachable regime
of strong coupling.

To generalize the QCD process shown in Fig. 1 to N = 4 SYM, we have to find an appropriate
analog of the QCD electromagnetic current. For this purpose we can choose any local protected
operator in N = 4 SYM, e.g., the half-BPS operator O20′(x) built from two scalar fields. At weak
coupling one can think about the state created by this operator as follows. The operator O20′(x)

produces out of the vacuum a pair of scalars that propagate into the final state and radiate on-shell
particles of N = 4 SYM – scalars, gluinos and gluons. The fact that these particles are massless
leads to a degeneracy of the final states. For instance, a single-particle state is undistinguishable
from the state containing an additional gluon with vanishing momentum and from the state con-
taining a pair of particles with aligned momenta and the same total charge. According to the
Kinoshita–Lee–Nauenberg mechanism [6,7], the degeneracy of on-shell states leads to (soft and
collinear) divergences in the perturbative expansion of the corresponding scattering amplitudes.

This phenomenon is quite general when massless particles are present in the spectrum. An
important issue in the early days of QCD was whether one could define quantities that are free
from infrared divergences at all orders of perturbation theory. The answer was found with the in-
troduction of the so-called inclusive infrared safe observables. The latter are given by a sum over
an infinite number of scattering amplitudes involving an arbitrary number of degenerate states
[1,4]. Each amplitude has infrared divergences but they cancel in the sum, so that infrared safe
observables are well defined in four dimensions order-by-order in the coupling. The question
arises whether there is another way to compute the same observables that bypasses the introduc-
tion of any regularization and, therefore, makes all symmetries of the theory manifest at each
step of the calculation.

As a simple example, consider the total probability of the transition O20′ → everything. This
is an infrared safe quantity, but it is given by (an infinite) sum over all final states, with each indi-
vidual term being infrared divergent. The optical theorem allows us to express the same quantity
as the imaginary part of the two-point (time-ordered) correlation function of the half-BPS opera-
tors O20′(x) (see Eq. (2.8) below). This two-point function is well defined in four dimensions and
its form is uniquely fixed by N = 4 superconformal symmetry. In this way, we obtain a definite
prediction for the total transition amplitude O20′ → everything that agrees with the result of an
explicit calculation [8] based on amplitudes.

In this paper, we deal with a special class of event shape distributions related to the flow of var-
ious quantum numbers (energy, charge) in the final state. A typical event contributing to such an
observable is shown in Fig. 4 below. There, the particles propagate into the final state where the
detectors measure the flow of their quantum numbers per solid angle in the directions indicated
by the unit vectors �n, �n′, . . . . As was shown in Refs. [9–12] in the context of QCD, the optical
theorem can be generalized to such differential distributions. For instance, the energy flow dis-
tributions can be expressed in terms of the correlation functions 〈O20′(x)E(�n)E(�n′) . . .O20′(0)〉
containing additional energy flow operators E(�n),E(�n′), . . . (one for each detector). Quantities
of this type have been studied in the framework of conformal field theories in [13], particularly in
connection with the AdS/CFT correspondence. An unusual feature of these correlation functions
is that the operators are not time-ordered. In other words, we are dealing with correlation func-
tions of the Wightman type defined on a space–time with Lorentzian signature. Notice, however,
that significant advances have been made in the calculation of their Euclidean counterparts. The
natural question arises whether we can make use of the latter to compute the weighted cross sec-
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tions. The answer was presented in the companion paper [14], where we explained in detail how
to obtain the charge flow correlators in a generic CFT, starting from the Euclidean correlation
functions and making a nontrivial analytic continuation. We briefly review it below to make the
exposition self-contained. In this paper, we apply the approach of [14] to the particular case of
N = 4 SYM.

The paper is organized as follows. In Section 2, we consider the process O20′ → everything
in N = 4 SYM and introduce a set of infrared safe observables, determined by weighted cross
sections, describing the flow of various quantum numbers into the final state in this process. We
also work out a representation for these observables in terms of Wightman correlation functions
involving insertions of flow operators. In Section 3, we consider weighted cross sections with
one or two flow operators and evaluate them to the lowest order in the coupling using the con-
ventional amplitude techniques. In Sections 4 and 5, we elaborate on the main result of this work
and explain how the same observables can be obtained from the known results for Euclidean
correlation functions of half-BPS and other operators, such as the R-current and the energy–
momentum tensor, in the same N = 4 supermultiplet. In particular, we derive a master formula
which yields an all-loop result for the weighted cross sections as a convolution of the Mellin
amplitude defined by the Euclidean correlation function with a coupling-independent ‘detector
kernel’ corresponding to the choice of the flow operators. In Section 6, we demonstrate the effi-
ciency of the formalism making use of the same examples as covered in Section 3, first at weak
and then at strong coupling. Section 7 contains concluding remarks. Several technical details are
deferred to Appendices A–E.

2. Correlations in N = 4 SYM

In the context of N = 4 SYM, we can introduce an analog of the quark electromagnetic
current, the lowest-dimension half-BPS Hermitian operator OIJ

20′(x) built from the six real scalars
ΦI (x) (with SO(6) vector indices I, J = 1, . . . ,6),

OIJ
20′(x) = tr

[
ΦIΦJ − 1

6
δIJ ΦKΦK

]
. (2.1)

Here ΦI ≡ ΦIaT a and the generators T a of the gauge group SU(Nc) are normalized as
tr[T aT b] = 1

2δab (with a, b = 1, . . . ,N2
c − 1). The operator (2.1) possesses a protected scaling

dimension, Δ = 2, very much like the QCD electromagnetic current. Moreover, it is the lowest-
weight state of the N = 4 stress-tensor supermultiplet and is related by supersymmetry to the
R-symmetry current, which can be viewed as a ‘cousin’ of the electromagnetic current.

The operator (2.1) belongs to the real irrep 20′ of the R-symmetry group SO(6) ∼ SU(4). To
keep track of the isotopic structure, it is convenient to consider the projected operator

O(x,Y ) = Y IY J OIJ
20′(x) = Y IY J tr

[
ΦI (x)ΦJ (x)

]
, (2.2)

where Y I is an auxiliary six-dimensional (complex) null vector, Y 2 = ∑6
I=1 Y IY I = 0, defining

the orientation of the operator in the isotopic space.3

Next, we can ask the question about the properties of the final states created by the operator
(2.2) from the vacuum. To lowest order in the coupling, the final state consists of a pair of scalars.

3 We can always reveal the index structure of the SO(6) tensor OIJ
20′ (x) by differentiating the final expressions involving

O(x,Y ) with respect to the Y ’s, bearing in mind the restriction Y 2 = 0.
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Fig. 2. The Feynman diagram contributing to σtot(q). The thin line stands for the unitarity cut.

For arbitrary coupling, the state
∫

d4x eiqxO(x,Y )|0〉 can be decomposed into an infinite tower
of asymptotic on-shell states, |ss〉, |ssg〉, |sλλ〉, . . . involving an arbitrary number of scalars (s),
gluinos (λ) and gauge fields (g). Each on-shell state carries the same quantum numbers – the
total momentum qμ, zero (color) SU(Nc) charge and R-charges of the irrep 20′. We can then
define the amplitude for creation of a particular final state |X〉 out of the vacuum,

〈X|
∫

d4x eiqxO(x,Y )|0〉 = (2π)4δ(4)(q − kX)MO20′→X, (2.3)

where kX is the total momentum of the state |X〉. Defined in this fashion, the amplitude MO→X

has the meaning of a form-factor,

MO20′→X = 〈X|O(0, Y )|0〉. (2.4)

For a given on-shell state |X〉, it suffers from IR divergences that require a regularization proce-
dure. In addition, this quantity depends on the number of colors Nc and on the coupling constant
gYM. For our purposes it proves convenient to introduce the ’t Hooft coupling g2 = g2

YMNc and
the analog of the fine structure constant, a = g2

YMNc/(4π2), familiar from QCD.

2.1. Total transition probability

In close analogy with the QCD process e+e− → everything, we can examine the transition
O20′ → everything. The total probability of this process is given by the sum over all final states

σtot(q) =
∑
X

(2π)4δ(4)(q − kX)|MO20′→X|2, (2.5)

where the summation runs over the quantum numbers of the produced particles including their
helicity, color, SU(4) indices, etc. To lowest order in the coupling, it describes the production of
a pair of scalars as shown in Fig. 2,4

σtot(q) = 1

2

(
N2

c − 1
)
(YY )2

∫
d4k

(2π)4
(2π)2δ+

(
k2)δ+

(
(q − k)2) + . . . , (2.6)

where the ellipsis stand for omitted higher order corrections and the integration in the first term
goes over the phase space of the two massless particles carrying the total momentum qμ. The
prefactor accompanying the integral is the SO(6) invariant contraction of the auxiliary internal
variables (YY ) = ∑

I Y I Y I .
Using the completeness condition on the asymptotic states,

∑
X |X〉〈X| = 1, we can rewrite

(2.5) as

4 We use Minkowski signature (+,−,−,−) and the shorthand notation δ+(k2) = δ(k2)θ(k0).
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σtot(q) =
∫

d4x eiqx
∑
X

〈0|O(0, Y )|X〉e−ixkX 〈X|O(0, Y )|0〉

=
∫

d4x eiqx〈0|O(x,Y )O(0, Y )|0〉, (2.7)

where O(x,Y ) = OIJ
20′Y IY J = (O(x,Y ))† (we recall that the operator OIJ

20′ is Hermitian). No-
tice that the operators in (2.7) are not time-ordered.

The optical theorem allows us to rewrite (2.7) as the imaginary part of the time-ordered cor-
relation function

σtot(q) = Im

[
2i

∫
d4x eiqx〈0|T O(x,Y )O(0, Y )|0〉

]
. (2.8)

The correlation function on the right-hand side is well defined in four dimensions and the same
is true for σtot(q). This is not the case however for each term on the right-hand side of (2.5)
since MO20′→X suffers from IR divergences. In agreement with the Lee–Nauenberg–Kinoshita
theorem [6,7], the infrared finiteness of σtot(q) is restored in the infinite sum over the final states
|X〉 in (2.5).

Another advantage of the representation (2.8) is that it allows us to compute σtot(q) exactly,
to all orders in the coupling. Indeed, in N = 4 SYM the two-point correlation function of the
half-BPS operators O(x,Y ) is protected from loop corrections5 and is given by the Born level
expression

〈0|T O(x,Y )O(0, Y )|0〉 = 1

2

(
N2

c − 1
)
(YY )2[DF (x)

]2
, (2.9)

where DF (x) = 1/(4π2(−x2 + i0)) is the Feynman propagator of the scalar field. Its substitution
into (2.8) yields the leading tree-level term in (2.6). Performing the integration in (2.6) we arrive
at

σtot(q) = 1

16π

(
N2

c − 1
)
(YY )2θ

(
q0)θ(

q2). (2.10)

The fact that σtot(q) does not depend on the coupling constant implies that the perturbative cor-
rections cancel order by order in N = 4 SYM. To two loop accuracy, this property has been
verified in Ref. [19] by an explicit calculation. The product of the two step functions on the
right-hand side of (2.10) ensures that the cross section is different from zero for the total mo-
mentum q0 > 0 and q2 > 0. In what follows we tacitly assume that this condition is satisfied and
we do not display the step functions in any formulas that follow.

2.2. Weighted cross section

The quantity (2.5) is completely inclusive with respect to the final states. We can define a less
inclusive quantity by assigning a weight factor w(X) to the contribution of each state |X〉

σW(q) = σ−1
tot

∑
X

(2π)4δ(4)(q − kX)w(X)|MO20′→X|2

= σ−1
tot

∫
d4x eiqx

∑
X

〈0|O(x,Y )|X〉w(X)〈X|O(0, Y )|0〉, (2.11)

5 See, e.g., [15–17] for non-renormalization theorems and Refs. [18] and [19] for explicit one- and two-loop perturba-
tive tests, respectively.
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where the additional factor of 1/σtot is inserted to obtain the normalization condition σW(q) = 1
for w(X) = 1. Appropriately choosing the weight factors w(X) and evaluating the corresponding
weighted cross section σW(q), we can get a more detailed description of the flow of various
quantum numbers of particles (energy, charge, etc.) in the final state |X〉.

For a generic final state |X〉, the scattering amplitude MO20′→X contains soft and collinear
divergences as we reviewed in the introduction. They arise from the integration over the loop
momenta of virtual particles and appear as poles in ε in dimensional regularization with
D = 4 − 2ε. Taken by itself, each term in the sum in the first relation in (2.11) vanishes as
|MO20′→X|2 ∼ e−f (g2)/ε2 → 0 for ε → 0 (with a positive-definite function f (g2) related to
the cusp anomalous dimension), due to the exponentiation of infrared singularities (see, e.g.,
Ref. [20]). However, these are not the only divergences that we encounter in the calculation of
the cross section. Namely, additional poles in 1/ε come from the integration over the phase space
of soft and collinear massless particles in the final state |X〉. For the cross section to be IR finite,
the two effects, i.e., virtual and real singularities should cancel each other, thus producing a finite
net result. In the case of the total transition probability σtot, the cancellation of IR divergences
follows from the Kinoshita–Lee–Nauenberg theorem. For weighted cross sections, the condition
of infrared finiteness imposes a severe restriction on the weights w(X) [21]. Namely, the weight
should be insensitive to adding one particle to the final state |X〉, with the momentum either soft,
or collinear to the momenta of the parent particles in the state |X〉.

2.2.1. Energy flow
One of the well-known examples of a weight factor, which was introduced in the context of

e+e−− annihilation and which is very useful for our purposes, corresponds to the energy flow.
For a given final on-shell state |X〉 = |k1, . . . , k�〉, consisting of � massless particles, k2

i = 0, with
the total momentum

∑
i k

μ
i = qμ, it is defined in the rest frame qμ = (q0, �0) as

wE (k1, . . . , k�) =
�∑

i=1

k0
i δ

(2)(Ω�ki
− Ω�n), (2.12)

where k
μ
i = (k0

i ,
�ki) and Ω�ki

= �ki/|�ki | is the solid angle in the direction of �ki . The corresponding
weighted cross section has a simple physical meaning – it measures the distribution of energy in
the final state that flows in the direction of the vector �n. Most importantly, the weight (2.12) can
be identified with the eigenvalue of the energy flow operator,

E(�n)|X〉 = wE (X)|X〉. (2.13)

As we show below, this relation allows us to simplify (2.11) along the same lines as in (2.7) and
to express the cross section σE in terms of the correlation function 〈0|O(x,Y )E(�n)O(0, Y )|0〉
with an insertion of the energy flow operator.

The explicit expression for the operator E(�n) is given in terms of the energy–momentum
tensor of N = 4 SYM [9–12] (see also [13])

E(�n) =
∞∫

0

dt lim
r→∞ r2niT0i (t, r �n), (2.14)

where the unit vector �n = (n1, n2, n3) (with �n2 = 1) indicates the spatial direction of the energy
flow. To get a better understanding of the action of the operator E(�n) on the asymptotic states, we
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replace the energy–momentum tensor Tμν(x) in (2.14) by its expression in terms of free fields
and obtain the following representation for E(�n) in terms of creation and annihilation operators:

E(�n) =
∫

d4k

(2π)4
2πδ+

(
k2)k0δ

(2)(Ω�n − Ω�k)
∑

p=s,λ,g

ab†
p (k)ab

p(k), (2.15)

where the sum goes over all on-shell states (scalars, helicity (±1/2) gluinos and helicity (±1)

gluons) carrying an SU(Nc) index b = 1, . . . ,N2
c − 1. To simplify the formulas, in what follows

we do not display the SU(Nc) indices of the creation/annihilation operators. Making use of the
(anti)commutation relations between a

†
i (k) and ai(k) (see, e.g., Eq. (A.3)), it is straightforward

to verify the relations (2.13) and (2.12), as well as the commutativity condition[
E(�n),E

(�n′)] = 0, for �n �= �n′. (2.16)

The latter equality states that the energy flows in two different directions �n and �n′ are independent
from each other and can be measured separately.

Making use of (2.16), we can define a weight which measures the energy flows in various
directions �n1, . . . , �n� simultaneously:

E(�n1) . . .E(�n�)|X〉 = wE(�n1)(X) . . .wE(�n�)(X)|X〉 ≡ w(X)|X〉. (2.17)

Substituting this relation into (2.11) we can apply the completeness relation
∑

X |X〉〈X| = 1 and
obtain the following representation of the corresponding weighted cross section6〈

E(�n1) . . .E(�n�)
〉 ≡ σE (q; �n1, . . . , �n�)

= σ−1
tot

∫
d4x eiqx〈0|O(x,Y )E(�n1) . . .E(�n�)O(0, Y )|0〉, (2.18)

which has the meaning of an energy flow correlation. Notice that the product of operators on the
right-hand side of (2.18) is not time-ordered and, therefore, their correlation function is of the
Wightman type.

2.2.2. Charge flow
In close analogy with (2.12) we can define a weight that measures the flow of the R-charges

through the detector. We recall that in N = 4 SYM only the scalars and gluinos are charged with
respect to the R-symmetry group SU(4). The flow of the R-charge is defined by the operator

QB
A(�n) =

∞∫
0

dt lim
r→∞ r2(J0)

B
A(t, r �n), (2.19)

involving the time component of the R-current (Jμ)BA(x). An important difference as compared
with (2.14) is that the operator transforms under SU(4). We shall come back to this point in a
moment.

Replacing the R-current in (2.19) by its expression in terms of the free fields, we obtain

QB
A(�n) =

∫
d4k

(2π)4
2πδ+

(
k2)δ(2)(Ω�n − Ω�k)

× [
a

†
AC(k)aCB(k) + a

†
A,1/2(k)aB−1/2(k) − a

B,†
−1/2(k)aA,1/2(k)

] − (trace), (2.20)

6 Below we show that dividing by σtot, Eq. (2.10), the Y -dependence drops out from (2.18).
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where (trace) denotes terms proportional to δB
A that are needed to ensure the tracelessness con-

dition δA
BQB

A(�n) = 0. Here a
†
A,1/2 and a

B†
−1/2 are the creation operators of gluinos with helicity

±1/2, respectively, and a
†
AC(k) are the creation operators of the scalars in SU(4) notation (see

Appendix B). Using (2.20) we can work out the action of the operator QB
A(�n) on the asymptotic

states. For instance, for a single-particle gluino state |k〉E ≡ a
†
E,1/2(k)|0〉 we get

QB
A(�n)|k〉E = δ(2)(Ω�k − Ω�n)

[
δB
E |k〉A − 1

4
δB
A |k〉E

]
, (2.21)

from where we conclude that the operator QB
A(�n) does not change the momentum of the particle

but it rotates its SU(4) index. The same is true for the scalar states whereas the gluon state has
zero R-charge and, therefore, is not affected by QB

A(�n).
Relation (2.21) seems to contradict our definition of the flow operator (2.13), according to

which the on-shell states should diagonalize the operator QB
A(�n). To restore the diagonal action

of the operator QB
A(�n) on the asymptotic states we introduce an auxiliary traceless matrix QA

B

and consider the following linear combination of the operators (2.20)

Q(�n;Q) = QA
BQB

A(�n). (2.22)

To preserve the reality condition on the eigenvalues of the flow operator (2.22), the matrix QA
B

should be Hermitian. This allows us to decompose it over its eigenvectors,

QA
B =

4∑
α=1

QαūA
α uα

B,

4∑
A=1

ūA
α u

β
A = δα

β ,

4∑
α=1

ūA
α uα

B = δA
B . (2.23)

Its real eigenvalues satisfy the tracelessness condition
∑4

α=1 Qα = 0.7

Using the eigenvectors of QA
B , we can define the projected on-shell states |k〉α = ūA

α |k〉A. Such
states allow us to rewrite the action of the SU(4) flow operator (2.22) on, e.g., a single-particle
gluino state |k〉A, in a form analogous to the diagonal action of the energy flow operator in (2.13).
Indeed, the charge flow operator (2.22) acts diagonally on the projected states |k〉α ,

Q(�n;Q)|k〉α = Qαδ(2)(Ω�k − Ω�n)|k〉α. (2.24)

The contribution of the gluino state to (2.11) can be written in two equivalent forms,∑
A |k〉A〈k|A = ∑

α |k〉AūA
α uα

B〈k|B = ∑
α |k〉α〈k|α . Then, the action of the charge flow oper-

ator Q(�n;Q) takes a diagonal form in the new basis:

Q(�n;Q)

4∑
A=1

|k〉A〈k|A = (
δ(2)(Ω�k − Ω�n)QB

A|k〉B
)〈k|A =Q(�n;Q)

∑
α

|k〉α〈k|α

=
4∑

α=1

|k〉α
(
Qαδ(2)(Ω�k − Ω�n)

)〈k|α. (2.25)

7 The eigenvectors define a unitary matrix, ūA
α = (uα

A
)∗ and uu† = I, which diagonalizes the Hermitian projection

matrix QA . They can be interpreted as harmonic variables on the coset SU(4)/[U(1)]3 [22,23].

B
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According to (2.25), the charge detector, described by the flow operator Q(�n;Q), decomposes
the on-shell state of each particle, propagating in the direction of the vector �n, over the four basis
vectors uα

A in the SU(4) space and assigns a charge Qα to each component.8

Like in (2.16), the charge flow operators depending on two distinct vectors �n �= �n′ commute
with each other and with the energy flow operators,[

Q(�n;Q),Q
(�n′;Q′)] = [

Q(�n;Q),E
(�n′)] = 0. (2.26)

Along the same lines as before, we can define the charge flow along various directions �n1, . . . , �n�

and express the corresponding weighted cross section as〈
Q(�n1) . . .Q(�n�)

〉 ≡ σQ(q; �n1, . . . , �n�;Q1, . . . ,Q�;Y)

= σ−1
tot

∫
d4x eiqx〈0|O(x,Y )Q(�n1,Q1) . . .Q(�n�,Q�)O(0, Y )|0〉.

(2.27)

Here each detector is specified by the unit vector �ni and by the Hermitian matrix (Qi)
Bi

Ai
, where

i = 1, . . . , �. Unlike the case of the energy correlations in (2.18), this weighted cross section has
a non-trivial dependence on the isotopic variables Q and Y (see Eq. (3.9) below).

2.2.3. Scalar flow
The definition of the energy and charge flow, Eqs. (2.14) and (2.19), respectively, involves two

of the conserved currents of the N = 4 SYM theory, the energy–momentum tensor Tμν(x) and
the R-current (Jμ)BA . As was already mentioned, they belong to the same N = 4 stress-tensor
supermultiplet whose lowest-weight state is the half-BPS scalar operator OIJ

20′(x), Eq. (2.1). This
suggests to introduce, in addition to the energy and charge flow, a ‘scalar flow’ operator corre-
sponding to OIJ

20′(x),

OIJ (�n) =
∞∫

0

dt lim
r→∞ r2OIJ

20′(t, r �n). (2.28)

These three flow operators have scaling dimensions

ΔO = −1, ΔQ = 0, ΔE = 1, (2.29)

respectively, as follows from the dimensions ΔO = 2, ΔJ = 3, ΔT = 4 of the defining operators
OIJ (x), (Jμ)BA(x) and T μν(x). The fact that the scaling dimension of O is negative has impor-
tant consequences, as we demonstrate below. Yet another basic difference of OIJ

20′ compared to

(Jμ)BA and T μν is that it is a Lorentz scalar and is not a conserved current. Since the operators
OIJ , (Jμ)BA and T μν belong to the same supermultiplet, we anticipate that the correlations of
the corresponding flow operators O, Q and E should be related to each other by supersymmetry.
In Section 6, we provide a lot of evidence for such relations, but the precise mechanism will be
worked out in our future work.

8 This decomposition corresponds to introducing the Cartan basis for the Lie algebra su(4). The charges Qα can be
interpreted as linear combinations of the three Cartan charges.
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The expression for the scalar flow operator (2.28) in terms of the free scalar fields looks as9

OIJ (�n) = 1

2

∫
d4k

(2π)4
2πδ+

(
k2)k−1

0 δ(2)(Ω�n − Ω�k)a
†{I (k)aJ }(k), (2.30)

where aI†(k) and aJ (k) are the creation and annihilation operators of scalars in SO(6) notations
(see Appendix B) and {IJ } denotes traceless symmetrization of the pair of SO(6) indices I

and J . The operator OIJ (�n) acts non-trivially only on the scalar on-shell states, |k〉I ≡ a†I (k)|0〉,
by rotating them in the isotopic SO(6) space. What is the most unusual about (2.30) is the inverse
power of the energy (in the rest frame of the source qμ = (q0, �0)). Its presence is a consequence
of the negative dimension (−1) of the operator O(�n) (see (2.29)).

To define the corresponding scalar flow operator we introduce, in close analogy with (2.22),
the following projection of the operators (2.30),

O(�n;S) = SIJOIJ (�n). (2.31)

Since OIJ (�n) is symmetric and traceless, the projection matrix SIJ has to have the same proper-
ties. In addition, the reality condition on the detector measurement leads to the reality condition
SIJ = S∗

IJ . This allows us to decompose SIJ over its real eigenvectors,

SIJ =
6∑

i=1

Siφ
i
I φ

i
J ,

6∑
I=1

φi
I φ

j
I = δij ,

6∑
i=1

φi
I φ

i
J = δIJ , (2.32)

with real eigenvalues Si . The condition for SIJ to be traceless leads to
∑6

i=1 Si = 0.10

Then, the scalar flow operator (2.30) takes the following form

O(�n;S) = 1

2

6∑
i=1

Si

∫
d4k

(2π)4
2πδ+

(
k2)k−1

0 δ(2)(Ω�n − Ω�k)
(
φia†(k)

)(
φia(k)

)
, (2.33)

and it is diagonalized by the projected on-shell scalar states |k〉i = φi
I |k〉I :

O(�n;S)

6∑
I=1

|k〉I 〈k|I = (2k0)
−1δ(2)(Ω�k − Ω�n)

6∑
I,J=1

SIJ |k〉J 〈k|I

=O(�n;S)

6∑
i=1

|k〉i〈k|i =
6∑

i=1

|k〉i
(

Si

2k0
δ(2)(Ω�k − Ω�n)

)
〈k|i . (2.34)

The interpretation of (2.34) is similar to that of (2.25) for the charge flow. The scalar flow operator
decomposes the on-shell scalar state moving in the direction of the vector �n over the basis of
eigenvectors (or SO(6) harmonics) φi

I and assigns to each component an eigenvalue Si divided
by (twice) the energy of the particle.

9 The additional factor of 1/2 on the right-hand side is due to our normalization of the gauge group generators

tr[T aT b] = δab/2.
10 The eigenvectors define an SO(6) matrix, φφT = I, which diagonalizes the projection matrix SIJ . They play the role

of harmonic variables on the coset SO(6)/[SO(2)]3.
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Fig. 3. Cross-talk between the two detectors. The thin line stands for the unitarity cut. The shaded blobs (vertices 1 and 4)
stand for the source and sink. The crosses denote the two detectors (vertices 2 and 3) oriented along the vectors �n and �n′ .
The detectors interact with each other by exchanging a particle with zero momentum.

Notice the appearance of the inverse energy factor in the last relation in (2.34). It leads to
some unusual properties of the scalar flow operator (2.33) as compared to its energy and charge
counterparts. To show this, we examine the commutator [O(�n;S),O(�n′;S′)]. Since each opera-
tor receives contributions from particles propagating along two different directions �n and �n′, we
may expect that

O(�n;S)O
(�n′;S′)|k〉 ∼ δ(2)(Ω�k − Ω�n)δ(2)(Ω�k − Ω�n′)|k〉 = 0. (2.35)

Hence, the commutator should vanish since the same particle cannot go through the two detectors
simultaneously. This is correct unless the momentum of the particle vanishes. Indeed, for �n �= �n′,
the conditions imposed by the two delta functions, �k = k0�n = k0�n′, are verified only if k0 =
�k = 0. Thus, the commutator [O(�n;S),O(�n′;S′)] can receive contributions only from particles
with zero momentum. The corresponding Feynman diagrams are shown in Fig. 3. Carefully
examining their contributions (see Appendix A), we find that, precisely due to the factor of 1/k0
in (2.33), the commutator is different from zero,[

O(�n;S),O
(�n′;S′)] ∼ a†I (0)(SS′ − S′S)IJ aJ (0)

1 − (�n�n′)
. (2.36)

At the same time, the scalar flow operator commutes with those of the energy and charge flow,[
O(�n;S),E

(�n′)] = [
O(�n;S),Q

(�n′;Q)] = 0. (2.37)

The non-vanishing commutator (2.36) leads to a divergence in certain weighted cross sections,
as explained later in the paper.

We observe that the expression on the right-hand side of (2.36) involves the commutator of
the matrices defining the two scalar detectors. Therefore, we can restore the commutativity of
the operators O(�n;S) and O(�n′;S′) by requiring[

S,S′] = 0. (2.38)

In physical terms, this condition prohibits the cross-talk between the two detectors mediated by
the exchange of particles with zero momentum. Notice that while this is a necessary condition
on the detector matrices, which eliminates potentially divergent contributions due to particle
exchanges with zero energy, it is not sufficient when we try to match the weighted cross sections
with the integrated correlation functions. The latter require further constraints on the projection
matrices S, see Appendix D for details.

Having defined the scalar flow operator (2.33), we can introduce the corresponding multiple-
detector weighted cross section
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〈
O(�n1) . . .O(�n�)

〉 ≡ σS(q; �n1, . . . , �n�;S1, . . . , S�;Y)

= σ−1
tot

∫
d4x eiqx〈0|O(x,Y )O(�n1, S1) . . .O(�n�,S�)O(0, Y )|0〉. (2.39)

It depends on a set of vectors �ni determining the spatial orientation of the detectors, as well as
on the projection matrices Si , Eq. (2.32). By construction, the scalar flow operators O(�ni, Si)

should commute with each other.
In addition to (2.18), (2.27) and (2.39), we can also define mixed correlations involving all

three flow operators, O(�ni, Si), Q(�ni,Qi) and E(�ni). As was already mentioned, they are effec-
tively related to each other by supersymmetry. The scalar correlations (2.39) play a special role
in our analysis below. Firstly, they can be expressed in terms of the correlation function involv-
ing � + 2 copies of the same half-BPS operator (2.1). Secondly, in the special case � = 2 the
correlation function of the half-BPS operators O(x) uniquely determines, by means of N = 4
supersymmetry transformations, all four-point correlation functions of the other operators from
the stress-energy multiplet that generate charge and energy flow correlations. This is not the case
for � > 2 since the solution to the corresponding N = 4 superconformal Ward identities is not
unique anymore due to the appearance of nontrivial N = 4 superconformal invariants depending
on 2 + � ≥ 5 points.

We would like to emphasize that, in virtue of the definition of the flow operators (2.14), (2.19)
and (2.28), the weighted cross sections (2.18), (2.27) and (2.39) are related to the integrated
Wightman correlation functions defined at spatial infinity. This makes the issue of infrared finite-
ness of the flow correlations extremely nontrivial. It is believed that the energy flow correlations
are IR finite both at weak and strong coupling whereas for the scalar and R-charge flow observ-
ables the situation remains unclear. As a counterexample, we can recall that similar problem also
arose in QCD, where the flavor observables in jet physics (closely related to charge flow corre-
lations) while perfectly well-defined at leading order of the perturbative expansion, cease to stay
finite once higher order corrections are accounted for [24]. The problem requires further studies
and will be addressed elsewhere.

3. Weighted cross sections from amplitudes

In this section we employ the conventional approach based on the scattering amplitudes to
evaluate the weighted cross sections introduced in the previous section to lowest order in the
coupling in N = 4 SYM.

We start by computing the matrix elements (2.4) involving the operator defined in (2.2). At
tree level, the final state consists of a pair of scalars denoted by |sI (k1)sJ (k2)〉:

σ0 = |MO20′→ss|2 = ∣∣〈s(k1)s(k2)
∣∣O(0, Y )|0〉∣∣2 = 1

2

(
N2

c − 1
)
(YY )2. (3.1)

To first order in the coupling, the final state also contains three-particle states |X〉 = |s, s,g〉 and
|X〉 = |s, λ,λ〉. The corresponding transition amplitudes are

|MO20′→ssg|2 = ∣∣〈s(k1)s(k2)g(k3)
∣∣O(0, Y )|0〉∣∣2 = g2σ0

4s12

s13s23
,

|MO20′→sλλ|2 = ∣∣〈λ(k1)λ(k2)s(k3)
∣∣O(0, Y )|0〉∣∣2 = g2σ0

8

s12
, (3.2)

where the notation was introduced for the Mandelstam invariants sij = (ki + kj )
2 with k2 = 0.
i
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The total transition probability (2.5) is given to order O(g2) by

σtot(q) =
∫

dPS2 |MO20′→ss|2 +
∫

dPS3
(|MO20′→ssg|2 + |MO20′→sλλ|2

) + O
(
g4)

= σ0

8π

[
1 + g2Fvirt

(
q2)] + 4g2σ0

∫
dPS3

s2
12 + 2s13s23

s12s13s23
+ O

(
g4), (3.3)

where Fvirt(q
2) describes the one-loop (virtual) correction to the transition amplitude (3.1) and

the notation was introduced for the Lorentz invariant integration measure on the phase space of �

massless particles with total momentum qμ,∫
dPS� =

∫ (
�∏

i=1

d4ki

(2π)4
2πδ+

(
k2
i

))
(2π)4δ(4)

(
q −

�∑
i=1

ki

)
. (3.4)

The symmetry of this integration measure under the exchange of any pair of particles allows us
to rewrite (3.3) as

σtot(q) = σ0

8π
+ g2 σ0

8π

[
Fvirt

(
q2) +

∫
dPS3

32π(q2)2

3s12s13s23

]
+ O

(
g4), (3.5)

where we symmetrized the one-loop integrand with respect to the particle momenta and used the
identity q2 = s12 + s23 + s13.

As was already mentioned, the total transition amplitude σtot(q) is protected from perturbative
corrections and, therefore, the terms proportional to g2 on the right-hand side of (3.5) should
vanish. This allows us to fix the virtual correction Fvirt(q

2).11 Taking into account (3.1) we
verify that the resulting expression for σtot(q) coincides with (2.10).

3.1. Single detector

Let us now examine the weighted cross sections involving a single detector. We start with the
energy flow. According to the definition (2.11), the corresponding cross section can be obtained
from the first relation in (3.3) by inserting the energy weight factor (2.12) into the phase space
integrals. The weight factor wE(�n)(k1, k2) for the transition MO20′→ss depends on the energy
of the two scalars (in the rest frame of the source), whereas for MO20′→ssg and MO20′→sλλ it
is given by wE(�n)(k1, k2, k3) that receives additive contributions from all produced particles, as
seen from Eq. (2.12). In this way, we obtain

σE (q; �n) = σ−1
tot

∫
dPS2 wE (k1, k2)|MO20′→ss|2

+ σ−1
tot

∫
dPS3 wE (k1, k2, k3)

(|MO20′→ssg|2 + |MO20′→sλλ|2
)

+ O
(
g4). (3.6)

Replacing the matrix elements on the right-hand side by their explicit expressions (3.1) and
(3.2), we symmetrize the integrands with respect to the particle momenta and find, after a simple
calculation,

11 Strictly speaking, both terms in the square brackets in (3.5) are IR divergent and require regularization. Their sum
vanishes in the dimensional regularization scheme.
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〈
E(�n)

〉 ≡ σE (q; �n) = 1

8π

∫
dPS2

∑
i=1,2

k0
i δ

(2)(Ω�ki
− Ω�n) = 1

4π
q0. (3.7)

Notice that this expression does not depend on the coupling constant. In Section 4 we show that
〈E(�n)〉 is indeed protected from loop corrections.12 We verify that the integral of (3.7) over �n
correctly reproduces the total energy,

∫
d2Ω�n〈E(�n)〉 = q0, in agreement with the results in [13].

For the charge flow the analysis goes along the same lines, with the only difference that
the non-trivial weight factor wQ is different from zero only for scalars and gluinos carry-
ing non-zero R-charges. As explained in Section 2.2.2, the charge flow operator introduces
the projection (or ‘polarization’) matrix QB

A for the SU(4) states of these particles. More pre-
cisely, at tree level, the contribution of the transition MO20′→ss to the total transition prob-
ability involves the R-symmetry factor (in SU(4) notation, see Appendix B) |MO20′→ss|2 ∼
yA1B1yA2B2 ȳ

A1B1 ȳA2B2 = tr(yȳ)2. Here the sum over the SU(4) indices corresponds to the sum-
mation over the quantum numbers of the particles propagating in the final state. The contribution
to the weighted cross section reads

yA1B1

[
2Q

A1
A′

1
δ(2)(Ω�k1

− Ω�n)
]
ȳA′

1B1yA2B2 ȳ
A2B2

+ yA1B1 ȳ
A1B1yA2B2

[
2Q

A2
A′

2
δ(2)(Ω�k2

− Ω�n)
]
ȳA′

2B2

= 2 tr(yȳ) tr(yQȳ)
[
δ(2)(Ω�k1

− Ω�n) + δ(2)(Ω�k2
− Ω�n)

]
, (3.8)

where the last expression is the corresponding weight factor.13 Inserting this result in the phase
space integral

∫
dPS2 |MO20′→ss |2 and taking into account (3.1) and (B.5), we obtain〈

Q(�n)
〉 ≡ σQ

(
q; (�n,Q);y) = 〈Q〉

4π

∫
dPS2

∑
i=1,2

δ(2)(Ω�ki
− Ω�n) = 1

π
〈Q〉, (3.9)

where 〈Q〉 is an isotopic factor keeping track of the R-charges,

〈Q〉 = tr(yQȳ)

tr(yȳ)
. (3.10)

To first order in the coupling constant, the correction to (3.9) has the same form as (3.6) with the
only difference that the corresponding charge weight factor is given by an expression analogous
to (3.8). Calculating the O(g2) correction to (3.9) we find that it vanishes (see footnote 12).

Finally, for the scalar flow, the weight factor wO is different from zero only for scalar particles.
According to (2.34), for a scalar with momentum ki in the final state, the insertion of the weight
factor modifies the SO(6) tensor structure as follows:

Y I δIJ Y J → Y I

((
k0
i

)−1
δ(2)(Ω�ki

− Ω�n)
1

2
SIJ

)
YJ , (3.11)

where SIJ is the projection matrix of the scalar detector. Repeating the calculation at Born level
we obtain〈

O(�n)
〉 ≡ σO

(
q; (�n,S);Y ) = 〈S〉

16π

∫
dPS2

∑
i=1,2

(
k0
i

)−1
δ(2)(Ω�ki

− Ω�n) = 1

2π

〈S〉
q0

, (3.12)

12 This property is related to the well-known fact that the three-point functions of half-BPS multiplets are protected
[15,16,18,17,19], see Section 4.
13 The factor of 2 takes into account that the charge flow operator rotates both indices of yAB (we recall that yAB =
−y ).
BA
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where 〈S〉 is an isotopic factor keeping track of the tensor structure,

〈S〉 = (YSY )

(YY )
, (3.13)

with (YSY ) ≡ Y ISIJ Y J . The calculation of the O(g2) correction to this expression shows that
it vanishes in the same manner as for 〈E(�n)〉 and 〈Q(�n)〉 (see footnote 12).

We recall that the expressions for the one-point correlations (3.7), (3.9) and (3.12) were ob-
tained in the rest frame of the source, qμ = (q0, �0). We present the same expressions in Lorentz
covariant form in Section 4.3.

3.2. Double correlations

In the previous subsection we have shown that the single-detector weighted cross sections
(3.7), (3.9) and (3.12) do not depend on the spatial orientation of the detector �n. For weighted
cross sections involving two detectors oriented along the vectors �n and �n′, the rotation symmetry
implies that they can only depend on the relative angle 0 ≤ θ ≤ π between the vectors, (�n · �n′) =
cos θ . We call such observables ‘double correlations’. For θ = 0 the orientations of the two
detectors coincide so that the same particle can go through them sequentially. For θ = π the
detectors capture particles moving back-to-back in the rest frame of the source.

The calculation of the double correlations at one loop goes along the same lines as in the pre-
vious subsection. For the double energy correlation 〈E(�n)E(�n′)〉, the only difference as compared
with (3.6) is that the weight factor wE (�n) gets replaced by the product wE (�n)wE (�n′), which fixes
the spatial orientation of the momenta of the two particles in the final state.

At Born level, the final state consists of two scalar particles moving collinearly in the
rest frame qμ = (q0, �0), each carrying energy q0/2. As a consequence, their contribution to
〈E(�n)E(�n′)〉 is localized at θ = 0 and θ = π ,

〈
E(�n)E

(�n′)〉(0) = q2
0

8π

[
δ(θ) + δ(π − θ)

]
. (3.14)

Here the first delta-function describes the situation of aligned detectors capturing particles mov-
ing into the same direction, while the second delta-function corresponds to two particles moving
back-to-back. For 0 < θ < π , the double-energy correlation receives a non-zero contribution
starting from one loop. It comes from the three-particle transitions MO20′→ssg and MO20′→sλλ,

〈
E(�n)E

(�n′)〉 = σ−1
tot

∫
dPS3

3∑
i,j=1

k0
i k

0
j δ

(2)(Ω�ki
− Ω�n)δ(2)(Ω�kj

− Ω�n′)

× (|MO20′→s(k1)s(k2)g(k3)|2 + |MO20′→s(k1)λ(k2)λ(k3)|2
)
. (3.15)

Using the explicit expressions for the matrix elements (3.2) we find (see Appendix C for details)

〈
E(�n)E

(�n′)〉 = g2

2(2π)4

q2
0

sin2 θ

1∫
0

dτ1

1 − τ1(1 − cos θ)/2
+ O

(
g4)

= g2

4
q2

0
1 + cos θ

4
ln

2 + O
(
g4), (3.16)
(2π) sin θ 1 + cos θ
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Fig. 4. Graphical representation of the double energy correlation: particles produced out of the vacuum by the source are
captured by the two detectors located at spatial infinity in the directions of the unit vectors �n and �n′ .

where the logarithmic correction arises from the integration over the energy fraction of one of
the particles, τ1 = 2k0

1/q0. For θ → 0, the expression on the right-hand side of (3.16) scales as
O(θ−2), whereas for w = π − θ → 0 it has the well-known Sudakov behavior O(w−2 ln(w−2)).
Both asymptotics are modified at higher loops in a controllable way [25].

It is convenient to rewrite (3.16) by introducing the scaling variable

z = (1 − cos θ)/2, (3.17)

where 0 < θ < π is the angle between the detector vectors �n and �n′. Then, the double-energy
correlation takes the following form at one loop

〈
E(�n)E

(�n′)〉 = a

4π2

q2
0

8z3

(
−z ln(1 − z)

1 − z

)
+ O

(
a2), (3.18)

with z varying in the range 0 < z < 1 and a = g2/(4π2), as defined earlier. It is instructive to
compare (3.18) with the analogous expression in QCD. In that case, the final state is created by
an electromagnetic current and it consists of quarks and gluons. To lowest order in the coupling,
the energy–energy correlation looks as [4]

〈
E(�n)E

(�n′)〉
QCD = aQCD

4π2

q2
0

8z3

[(
− z

1 − z
+ 9

z2
− 15

z
+ 3

)
ln(1 − z)

+
(

9

z
− 3

2(1 − z)
− 9

)]
+ O

(
a2

QCD

)
, (3.19)

where aQCD = g2
QCDC2/(4π2) is the QCD fine structure coupling constant (with C2 =

(N2
c − 1)/(2Nc) being the quadratic Casimir in the fundamental representation of the SU(Nc)).
We observe that the N = 4 SYM result (3.18) can be obtained from the QCD expression

(3.19) by discarding the rational term inside the square brackets in (3.19) and by retaining only
the leading singularity for z → 1 in the ln(1 − z) term. In other words, the two expressions
have the same leading asymptotic Sudakov behavior as z → 1. According to (3.17), this limit
corresponds to the two detectors capturing particles moving back-to-back in the rest frame of the
source (see Fig. 4).

For the double-scalar correlation 〈O(�n)O(�n′)〉 the weights corresponding to the particles in
the final state of MO20′→X also depend on the detector matrices S and S′. For 0 < θ < π , to
one-loop order, it reduces to the product of isotopic factors 〈S〉〈S′〉 from the single detector
correlation (3.12):
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〈
O(�n)O

(�n′)〉 = σ−1
tot

∫
dPS3

(
k0

1k0
2

)−12δ(2)(Ω�k1
− Ω�n)δ(2)(Ω�k2

− Ω�n′)

× (YSY )
(
YS′Y

)|MO20′→s(k1)s(k2)g(k3)|2, (3.20)

where the additional factor of 2 comes from the symmetry of the weight factor under exchanging
the detectors, �n ↔ �n′. Performing the integration over the phase space of the three particles in
the final state of MO20′→ssg, we obtain (see Appendix C)

〈
O(�n)O

(�n′)〉 = a

4π2

〈S〉〈S′〉
2q2

0z

(
−z ln(1 − z)

1 − z

)
+ O

(
a2), (3.21)

with 0 < z < 1.
For the double-charge correlation 〈Q(�n)Q(�n′)〉, with 0 < θ < π , we have to take into account

all possible correlations between the charges of scalars and gluinos in the final state〈
Q(�n)Q

(�n′)〉 = 2σ−1
tot

∫
dPS3

[
4 tr(yQȳ) tr

(
yQ′ȳ

)
δ(2)(Ω�k1

− Ω�n)δ(2)(Ω�k2
− Ω�n′)

× (|MO20′→s(k1)s(k2)g(k3)|2 + |MO20′→s(k1)λ(k2)λ(k3)|2
)

+ tr[yȳ] tr
[
yQȳQ′]δ(2)(Ω�k2

− Ω�n)δ(2)(Ω�k3
− Ω�n′)

× |MO20′→s(k1)λ(k2)λ(k3)|2
]
, (3.22)

where the three last lines describe the correlations between two gluinos. Note that tr[yQȳQ′] =
tr[yQ′ȳQ] due to the antisymmetry of the matrices y, ȳ. The integration over the final state phase
space yields〈

Q(�n)Q
(�n′)〉 = − a

π2

ln(1 − z)

4z2

(
2z

1 − z
〈Q〉〈Q′〉 + 〈

Q,Q′〉) + O
(
a2), (3.23)

where 〈Q〉 is given by (3.10) and the notation was introduced for the (non-factorizable) correla-
tion between the matrices of the two detectors〈

Q,Q′〉 ≡ tr[yQȳQ′ + ˜̄yQỹQ′]
2 tr[yȳ] = tr[yQ′ȳQ + ˜̄yQ′ỹQ]

2 tr[yȳ] , (3.24)

with ˜̄yAB = 1
2εABCDȳCD and ỹAB = 1

2εABCDyCD . In the above calculation we have tacitly
assumed that the detectors measure two different particles. In general, we also have to examine
the possibility for the same particle to go sequentially through the two detectors. As was already
explained, for �n �= �n′ (or equivalently θ �= 0) the momentum of the particle should be necessarily
zero in this case and, as a result, its contribution to the charge correlations vanishes. The same is
true for the scalar correlations provided that the projection matrices of the detectors satisfy the
‘no-cross-talk’ condition (2.38).

In a similar manner, we can also define mixed correlations involving various flow operators:〈
Q(�n)E

(�n′)〉 = a

4π2
〈Q〉q0

(
− ln(1 − z)

z2(1 − z)

)
+ O

(
a2),

〈
O(�n)E

(�n′)〉 = a

16π2
〈S〉

(
− ln(1 − z)

z2(1 − z)

)
+ O

(
a2),

〈
Q(�n)O

(�n′)〉 = a

2
〈Q〉〈S′〉(q0)−1

(
− ln(1 − z)

)
+ O

(
a2). (3.25)
4π z(1 − z)
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Fig. 5. The relation between the weighted cross section and Wightman correlation function. The operators at points 1
and 4 describe the source and sink, respectively. The operators at points 2 and 3 define the flow operators shown by
crosses. ‘Limit2,3’ stands for the detector limit which amounts to sending the operators at point 2 and 3 at null infinity
with subsequent integration over their light-cone coordinates (see Eqs. (4.4) and (4.5) below).

Notice that the dependence of these expressions on the total energy q0 is uniquely fixed by the
scaling dimension of the flow operators. The non-trivial dynamical information resides in the
z-dependence. Quite remarkably, the obtained one-loop expressions are all proportional to the
same function ln(1 − z)/(1 − z). Its appearance is not accidental, of course, since it ensures the
universal Sudakov behavior of the correlations for z → 1.

The approach described in this section can be extended to higher loops. Namely, to any or-
der in the coupling constant, following (2.11) we can express the correlations as a sum over all
possible final states, evaluate the corresponding transition amplitudes (2.4) and, then, perform
the integration over the phase space. However, such an approach becomes very cumbersome
and inefficient beyond one loop for the following reasons. The number of production channels
O20′ → X grows rapidly at higher loops and, therefore, we have to deal with an increasing num-
ber of terms in the sum over the final states. Secondly, with many particles in the final state the
integration over their phase space becomes very complicated and cannot be done analytically.
Finally, each individual transition amplitude |MO20′→X|2 suffers from infrared divergences and
requires regularization. Infrared divergences cancel however in the sum over all final states be-
tween contribution involving different number of particles.14

In the next section we describe another approach to computing the various double correlations
in N = 4 SYM. It makes efficient use of the superconformal symmetry of the theory. It also
allows us to go to higher loops and even to strong coupling, via the AdS/CFT correspondence.

4. Weighted cross sections from correlation functions

In this section we shall exploit the relation between physical observables and correlation
functions involving two half-BPS operators as the source and sink, and various flow operators,
Eqs. (2.18), (2.27) and (2.39), as the detectors. Unlike the more familiar Euclidean correlation
functions, widely discussed in the N = 4 SYM literature, the operators on the right-hand side
of (2.18), (2.27) and (2.39) are essentially Minkowskian and are non-time ordered. This means
that we will be dealing with Wightman correlation functions. As we have shown in the previous
section, they define the charge flow correlations in the detector limit (see Fig. 5).

In this section we explain how the Wightman correlation functions in (2.18), (2.27) and (2.39)
can be obtained from their Euclidean counterparts by analytic continuation. The Euclidean corre-

14 See however the last paragraph in Section 2.
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lation functions have singularities at x2
ij = 0, corresponding to short-distance separation between

the operators, xi → xj . In Minkowski space, additional singularities appear when the opera-
tors become light-like separated. In this case the analytic properties of the correlation function
crucially depend on the ordering of the operators (time ordering versus Wightman). Therefore,
performing the analytic continuation of the correlation functions from Euclid to Minkowski we
have to pay special attention to their analytic properties.

4.1. Lorentz covariant definition of the detectors

In Section 2.2 we have defined the flow operators (2.14), (2.19) and (2.28) in the rest frame
of the source qμ = (q0, �0). To make use of the conformal symmetry of the correlation functions,
we have to restore the Lorentz covariance and extend the definitions to any reference frame.

We recall that the time integral in the definition of the flow operators (2.14), (2.19) and (2.28)
has the interpretation of the working time of the detector located at the position r �n relative to
the collision point. The space–time coordinate of the detector xμ = (t, r �n) can be decomposed
in the basis of two light-like vectors,

xμ = x+nμ + x−n̄μ, nμ = (1, �n), n̄μ = (1,−�n), (4.1)

with x+ = 1
2 (t + r) = (xn̄)/2 and x− = 1

2 (t − r) = (xn)/2. We can restore manifest Lorentz
covariance by rescaling each light-like vectors by an arbitrary positive scale,

nμ → ρnμ, n̄μ → ρ′n̄μ, (4.2)

with ρ,ρ′ > 0. This lifts the restriction that the time component of nμ is equal to 1. Then the
covariant definition of the light-cone coordinates in (4.1) looks as

x+ = (xn̄)

(nn̄)
, x− = (xn)

(nn̄)
. (4.3)

Notice, however, that covariance can only be maintained if all the expressions we encounter are
homogeneous under such local rescalings, allowing us to go back to the original form of vectors
n and n̄ in (4.1). By ‘local’ we mean that the coordinates of each flow operator should rescale
with their own, independent parameter ρ.

The next step is to reformulate the detector limit, r → ∞ and 0 ≤ t < ∞, in terms of the
light-cone variables x±. We illustrate the correct procedure relying on the example of the energy
flow. If we just take r → ∞ but keep t fixed, as in the original definition (2.14), we would have
x± → ±∞ which is clearly too strong. We need to keep one of these variables fixed while taking
the other one to infinity. In physical terms, the flow operator admits the following interpretation.
We can think of a massless particle captured by the detector as of a wave front propagating in
the direction nμ and spreading along the direction n̄μ. This suggests to first send the detector to
future infinity along, say, the light-cone direction nμ and then integrate over the position of the
massless particles on the wave front along the direction n̄μ. In terms of the light-cone coordinates
this means that we first take the limit x+ → ∞, whereas x− remains finite. The time integral in
(2.14) then becomes an integral over −∞ < x− < ∞. This brings us to the new definition

E(n) = (nn̄)

∞∫
dx− lim

x+→∞x2+T++(x+n + x−n̄), (4.4)
−∞
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in terms of the covariant light-cone component of the stress tensor T++ ≡ n̄μn̄νTμν(x)/(nn̄)2.
Under the rescaling (4.2) the flow operator transforms homogeneously with the weight (−3),
E → ρ−3E , as required for maintaining Lorentz covariance.

In a similar manner, we can define the Lorentz covariant generalization of the charge and
scalar flow operators, Eqs. (2.19) and (2.28),

QB
A(n) = (nn̄)

∞∫
−∞

dx− lim
x+→∞x2+(J+)BA(x+n + x−n̄),

OIJ (n) = (nn̄)

∞∫
−∞

dx− lim
x+→∞x2+OIJ

20′(x+n + x−n̄), (4.5)

where J+(x) ≡ n̄μJμ(x)/(nn̄) is the light-cone component of the R-current. They have rescaling
weights (−2) and (−1), respectively.

The expressions in the right-hand sides of (4.4) and (4.5) involve the two light-like vectors
n and n̄, but the dependence on the latter is redundant. To illustrate this point, it is sufficient to
rewrite these operators in terms of creation and annihilation operators. For instance, we can start
with (4.4) and repeat the calculation of (2.15) to find, with the help of (A.1),

E(n) = 1

2(2π)3

∞∫
0

dτ τ 2
∑

i=s,q,g

a
†
i (nτ)ai(nτ), (4.6)

so that the dependence on n̄μ drops out. Notice that the annihilation/creation operators in (4.6)
depend on the momentum kμ = nμτ , collinear with the light-like vector defining the space–
time orientation of the detector. The charge and scalar flow operators admit similar representa-
tions (see Eq. (A.2) for the latter). An important difference is, however, that the corresponding
τ -integral measure becomes

∫
dτ τ and

∫
dτ , respectively.

Relation (4.6) (together with the analogous relations for the scalar and charge flow operators)
confirms the transformation properties of the flow operators under the rescaling (4.2) derived
above. Changing the integration variable τ → τ/ρ, we find

E(ρn) = ρ−3E(n), QB
A(ρn) = ρ−2QB

A(n), OIJ (ρn) = ρ−1OIJ (n), (4.7)

where the factors of ρ are related to the power of τ in the corresponding integral representa-
tion. As we show in the next subsection, the requirement of homogeneity under the independent
rescalings (4.7) of each flow operator imposes a strong constraint on the possible form of the
correlations of the flow operators, Eqs. (2.18), (2.27) and (2.39).

4.2. Symmetries

Let us introduce a generic notation Di (n) for all flow operators (scalar, charge and energy).
We are interested in the symmetry properties of their correlations〈

D1(n1) . . .D�(n�)
〉
q

= σ−1
tot

∫
d4x eiqx〈0|O(x,Y )D1(n1) . . .D�(n�)O(0, Y )|0〉. (4.8)

Here we introduced the subscript q on the left-hand side to indicate the dependence on the total
momentum transferred (see Fig. 5). By construction, the correlation function (4.8) is invariant
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under permutations of any pair of detectors. In addition, 〈D1(n1) . . .D(n�)〉q is invariant under
Lorentz transformations of the total momentum qμ and of the light-like vectors n

μ
i defining the

detector orientation,〈
D1(Λn1) . . .D�(Λn�)

〉
Λq

= 〈
D1(n1) . . .D�(n�)

〉
q
. (4.9)

The correlations (4.8) have two additional symmetries related to the independent rescaling of
n

μ
i and qμ. The flow operators are defined in terms of the operators O20′ , Jμ and T μν carrying

Lorentz spins 0, 1 and 2, respectively. According to (4.7), the spin controls their transformation
properties under the rescaling nμ → ρnμ, leading to〈

D1(ρ1n1) . . .D�(ρ�n�)
〉
q

= ρ
−1−s1
1 . . . ρ

−1−s�
�

〈
D1(n1) . . .D�(n�)

〉
q
, (4.10)

where sO = 0, sQ = 1 and sE = 2.
The other scaling property is related to the rescaling qμ → λqμ. Since the vectors n

μ
i are

dimensionless, this transformation can be compensated by the dilatations xμ → λ−1xμ of the
coordinates,〈

D1(n1) . . .D�(n�)
〉
λq

= λΔ1+...+Δ�
〈
D1(n1) . . .D�(n�)

〉
q
, (4.11)

where Δi is the scaling dimension of the flow operator, ΔO = −1, ΔQ = 0 and ΔE = 1. Notice
that all three flow operators have the same twist Δ − s = −1.

Relations (4.9)–(4.11) allow us to fix the single-detector correlation of all flow operators up
to an overall normalization factor. Denoting by D(n; s) the flow operator with the spin s and
scaling dimension Δ = s − 1, we can write

O(n) =D(n;0), Q(n) =D(n;1), E(n) =D(n;2). (4.12)

By virtue of (4.9), the single-detector correlation 〈D(n; s)〉 depends on the two Lorentz invariants
(qn) and q2. The dependence on the former is controlled by the spin s, i.e., by the required degree
of homogeneity under the rescalings (4.10). Then the q2-dependence is fixed by the scaling
dimension Δ, resulting in〈

D(n; s)〉 = cD
(q2)s

(qn)s+1
. (4.13)

For the charge and energy flow correlations, we can fix the normalization constant cD by
making use of the fact that the flow operator in both cases is determined by a conserved current.
As a consequence, integrating over the position of the detector on the sphere nμ = (1, �n) with
�n2 = 1 in the rest frame of the source qμ = (q0, �0), we should find the corresponding conserved
quantity – the total energy

∫
dΩ�n〈E(�n)〉 = q0 and the total charge

∫
dΩ�n〈Q(�n)〉 = 4〈Q〉 of the

state.15 In this way we get

cE = 1
/∫

dΩ�n = 1

4π
, cQ = 〈Q〉

π
. (4.14)

Let us now consider the double-detector correlation 〈D(n; s)D(n′; s′)〉. The main difference,
compared to the previous case, is that it is not fixed anymore by symmetries. The reason for this
is that we can define a ratio invariant under the transformations (4.9)–(4.11),

15 Equivalently, the three-point functions of two scalars with a current or a stress-energy satisfy a Ward identity which
relates their normalization to that of the two-point functions.
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z = q2(nn′)
2(qn)(qn′)

. (4.15)

Here we introduced the factor of 2 to ensure that 0 ≤ z ≤ 1 for a time-like vector q and light-like
vectors n and n′. In particular, in the rest frame of the source qμ = (q0, �0), the variable z is
related to the angle between the two detectors, z = (1 − cos θ)/2. This variable already appeared
in the amplitude context, see (3.17).

Thus, all the symmetries mentioned above allow us to determine the double-detector correla-
tion up to an arbitrary function of the invariant variable z,16

〈
D(n; s)D(

n′; s′)〉 = (q2)s
′−1(qn′)s−s′

(nn′)s+1

Fss′(z)

4π2
. (4.16)

In what follows we shall refer to Fss′(z) as the event shape function. The symmetry of the corre-
lator in the left-hand side of (4.16) under the exchange of the flow operators leads to the crossing
symmetry Fss′(z) = (2z)s

′−sFs′s(z). Eq. (4.16) is consistent with the fact that 〈D(n; s)D(n′; s′)〉
is related to the four-point correlation function which is fixed by conformal symmetry up to
a function depending on two conformally invariant cross-ratios. In the detector limit, i.e., after
sending r → ∞ and the subsequent time integration, this function effectively depends on a single
variable. It is straightforward to extend (4.16) to the multi-detector correlations (4.8) involving
an arbitrary number of flow operators. In that case, 〈D1(n1) . . .D�(n�)〉 is given by the product
of single-detector correlations (4.13) times an arbitrary function depending on the relative angles
between the detectors.

We present below a list of double-detector correlations involving the three types of detectors
considered in this paper. Combining together (4.16) and (4.12), we get

〈
E(n)E

(
n′)〉 = q2FEE (z)

4π2(nn′)3
,

〈
E(n)Q

(
n′)〉 = (qn′)FEQ(z)

4π2(nn′)3
,

〈
Q(n)Q

(
n′)〉 = FQQ(z)

4π2(nn′)2
,

〈
E(n)O

(
n′)〉 = (qn′)2FEO(z)

4π2q2(nn′)3
,

〈
O(n)O

(
n′)〉 = FOO(z)

4π2q2(nn′)
,

〈
Q(n)O

(
n′)〉 = (qn′)FQO(z)

4π2q2(nn′)2
, (4.17)

where F(z) are arbitrary functions of z. Matching these relations with the amplitude results
(3.18), (3.21) and (3.23), we find to the lowest order in the coupling

FEE (z) = −a
z ln(1 − z)

1 − z
+ O

(
a2),

FQQ(z) = −4a

(
2z ln(1 − z)

1 − z
〈Q〉〈Q′〉 + ln(1 − z)

〈
Q,Q′〉) + O

(
a2),

FOO(z) = −a
z ln(1 − z)

1 − z
〈S〉〈S′〉 + O

(
a2), (4.18)

and similarly for the mixed correlations from (3.25),

FEQ(z) = −8a
z ln(1 − z)

1 − z

〈
Q′〉 + O

(
a2),

16 For certain detectors D the function Fss′ will also depend on the auxiliary ‘isotopic’ variables, see below.
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FEO(z) = −2a
z ln(1 − z)

1 − z

〈
S′〉 + O

(
a2),

FQO(z) = −4a
z ln(1 − z)

1 − z
〈Q〉〈S′〉 + O

(
a2). (4.19)

Notice that FOO(z) agrees (up to an overall factor) with the result presented in [26]. We observe
that the lowest order corrections to all event shape functions (except FQQ(z)) involve the same
function z ln(1 − z)/(1 − z). We come back to this issue in Section 6.

4.3. Single-detector correlations

As an illustration of the general considerations above, in this subsection we revisit the calcu-
lation of the detector correlations with a single detector insertion, 〈O(n)〉, 〈Q(n)〉 and 〈E(n)〉, by
using their relation to the three-point correlation functions of the scalar half-BPS operators O20′ ,
the R-symmetry current and the energy–momentum tensor. The latter was discussed previously
in Ref. [13]. Here we illustrate the main steps needed to obtain the cross section from the corre-
lation function: analytic continuation from Euclidean to Wightman functions, taking the detector
limit, performing the time integrals and the Fourier transform.

4.3.1. Single scalar detector
According to (2.39), the single scalar detector correlation is given by〈

O(n)
〉 = σ−1

tot

∫
d4x1 eiqx1〈0|O(x1, Y )SIJOIJ (n)O(0, Y )|0〉, (4.20)

with the normalization factor defined in (2.10). At the lowest order in the coupling, 〈O(�n)〉 was
computed in (3.12) from the amplitudes in the rest frame of the source. Let us obtain the same
result from the three-point Wightman function of the half-BPS operators by inserting (4.5) into
(4.20):

〈
O(n)

〉 = SIJ

σtot

∫
d4x1 eiqx1

∞∫
−∞

dx2−(nn̄)

× lim
x2+→∞x2

2+〈0|O(x1, Y )OIJ
20′(x2+n + x2−n̄)O(0, Y )|0〉W . (4.21)

We do this in three steps:

(i) start with the expression for the Euclidean three-point correlation function of the half-BPS
operators OIJ

20′(x) and project the SO(6) indices according to (4.21);
(ii) perform an analytic continuation to obtain the Wightman function in Minkowski space–

time;
(iii) take the detector limit (by sending x+ → ∞ and integrating over −∞ < x− < ∞) and

make the Fourier transform with respect to the position of the source to introduce the total
momentum qμ.

The correlation functions of the half-BPS operators OIJ
20′ have a number of remarkable prop-

erties in N = 4 SYM. First of all, the conformal weight of OIJ
20′ is protected from quantum

corrections and, as a consequence, their three-point correlation function in Euclidean space,

GE(1,2,3) = 〈0|O(x1, Y1)O(x2, Y2)O(x3, Y3)|0〉E, (4.22)
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is fixed by conformal symmetry up to an overall normalization factor. Furthermore, this fac-
tor also does not receive quantum corrections, meaning that the three-point correlation function
(4.22) is given by its Born-level expression. Since O(xi, Yi) is bilinear in the scalar fields, the
latter expression reduces to the product of three free scalar propagators DE(x) ∼ 1/x2:

GE(1,2,3) = (
N2

c − 1
)
(Y1Y2)(Y2Y3)(Y1Y3)DE(x12)DE(x23)DE(x13). (4.23)

Here (YiYj ) = ∑6
I=1 Y I

i Y I
j are the invariant contractions of the auxiliary SO(6) complex null

vectors Y I
i which help us to keep track of the R-symmetry structure. In the context of the corre-

lation function, they play the role of the coordinates in the internal (isotopic) SU(4) space and
are treated on equal footing with the space–time coordinates xi of the operators. As explained
above, the definition of the single-detector correlation (4.20) involves the Wightman function
GW(1,2,3) in Minkowski space–time. Knowing the expression in Euclidean space (4.23), we
can obtain GW(1,2,3) by simply replacing the Euclidean scalar propagators by their Wightman
counterparts,

GW(1,2,3) = GE(1,2,3)|DE(x)→DW (x). (4.24)

Here DW(x) is given by the two-point (non-time ordered!) correlation function of free scalar
fields in Minkowski space–time

〈0|ΦI (xi)Φ
J (xj )|0〉 = δIJ DW(xij ) = − δIJ

4π2

1

x2
ij − iεx0

ij

. (4.25)

We would like to emphasize that the analytic continuation in (4.24) relied on the simplicity
of the three-point correlation function (4.23). Later in the paper we shall consider the four-point
correlation function of half-BPS operators GE(1,2,3,4). It is not protected anymore and the per-
turbative corrections to GE(1,2,3,4) are described by a complicated function of the conformal
cross-ratios. It then becomes a non-trivial task to find its analytic continuation GW(1,2,3,4).

The Wightman function (4.24) depends on three auxiliary isotopic null vectors Yi (with i =
1,2,3). In the case of the scalar flow correlation (4.20) the choice of the analogous auxiliary
variables was dictated by the requirement for 〈O(n)〉 to have real values. This is why we associate
the complex null vector Y with the source and its conjugate Y with the sink, while the detector
matrix SIJ is chosen real. In the case of the correlation function, the variables Yi are holomorphic
coordinates of the half-BPS operators in the internal space. However, what really matters is that
we can always remove the auxiliary variables Yi to reveal the R-tensor structure of the correlation
function, and then project it with the new set of auxiliary variables Y,Y ,S appearing in (4.20).
In the case of the Wightman function (4.24), this amounts to the substitution rule for the isotopic
variables Y I

1 → Y I , Y I
3 → Y I and Y I

2 YJ
2 → SIJ , leading to

(Y1Y2)(Y2Y3)(Y1Y3) → (YY )(YSY ) ≡ (YY )2〈S〉. (4.26)

For a more detailed discussion of the two sets of auxiliary isotopic variables and their matching
see Appendix D.

The next step is to take the detector limit of the Wightman function GW(1,2,3). To match the
correlation function on the right-hand side of (4.21), we put x3 = 0 and identify x

μ
2 = x2+nμ +

x2−n̄μ to be the detector coordinate. Then, for x2+ → ∞ we make use of the relations x2
12 −

i0x0
12 → 2x2+(x2−(nn̄) − (x1n) + i0) and x2

2 − iεx0
2 → 2x2+(x2−(nn̄) − iε) to find from (4.24)

and (4.23)
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lim
x2+→∞x2

2+GW(1,2,3) ∼ (YY )2〈S〉
(x2−(nn̄) − (x1n) + iε)(x2−(nn̄) − iε)(x2

1 − iεx0
1)

. (4.27)

According to (4.21), we have to integrate this expression over the detector light-cone coordinate
x2−. The expression on the right-hand side of (4.27) has two poles in x2− located on the opposite
sides of the real axis. Closing the integration contour in, say, the upper half-plane, we get

(nn̄)

∞∫
−∞

dx2− lim
x2+→∞x2

2+GW(1,2,3) ∼ (YY )2〈S〉
((x1n) − iε)(x2

1 − iεx0
1)

. (4.28)

Notice that, as announced in Section 4.1, the second light-like vector n̄ has dropped out of the
right-hand side. Finally, we perform the Fourier transform of (4.28) and collect various factors
to obtain

〈
O(n)

〉 = σ−1
tot

∫
d4x eiqx

∞∫
−∞

dx2−(nn̄) lim
x2+→∞x2

2+GW(1,2,3) = 1

2π

〈S〉
(qn)

. (4.29)

In the rest frame of the source qμ = (q0, �0) this relation coincides with (3.12) and agrees with
the general form (4.13).

4.3.2. Single charge detector
Let us repeat the above analysis for the single-detector correlation of the charge flow operator

(2.27),〈
Q(n)

〉 = QB
A

σtot

∫
d4x eiqx〈0|O(x,Y )QA

B(n)O(0, Y )|0〉. (4.30)

Replacing QA
B(n) with its definition (4.5), we find that it is related to the three-point Wightman

correlation function of two half-BPS operators O20′ and the R-symmetry current J ,

QB
An̄μ〈0|O(x1, Y )

(
Jμ

)A

B
(x2)O(x3, Y )|0〉W , (4.31)

upon appropriate identification of the coordinates.
As before, we start with the Euclidean version of three-point function (4.31). This is another

example of a protected correlation function, hence it is given by the Born level result

GE
μ ≡ 〈0|OI1J1(x1)

(
Jμ

)A

B
(x2)O

I3J3(x3)|0〉E
= −i

N2
c − 1

16π6

(Γ {I1{I3)ABδJ1}J3}

x2
12x

2
23x

2
13

(
x

μ
12

x2
12

+ x
μ
23

x2
23

)
, (4.32)

where Γ IJ is the generator of the fundamental representation of SU(4) defined in (B.4) and
{IJ } denotes the traceless symmetrization of the pairs of indices I1J1 and I3J3, as required by
the index structure of the operators O20′ . It is easy to check that the expression in the right-hand
side of (4.32) satisfies the current conservation condition at point 2 and is conformally covariant
with the relevant scaling weight at each point.

The expression for 〈Q(n)〉 in (4.30) involves a projection of the SU(4) tensor structure in
(4.32) with Y I1YJ1QB

AY I3YJ3 , resulting in

(YY )Y I
(
Γ IJ

)A

B
QB

AYJ = 1

4
tr(yȳ) tr(yQȳ), (4.33)

where tr(yQȳ) = yABQBȳCA and the variables yAB and ȳAB are defined in (B.1).
C
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As in the previous case, the Wightman correlation function (4.31) can be obtained from the
Euclidean one in (4.32) by replacing the intervals (see footnote 18 below) as x2

ij → −(x2
ij −iεx0

ij )

(for i < j ) in the right-hand side of (4.32). Further, we specify the coordinates of the operators
as x3 = 0 and x

μ
2 = x2+nμ + x2−n̄μ and obtain in the detector limit x2+ → ∞

lim
x2+→∞x2

2+GW
μ ∼ nμ(x1n)

((x1n) − x2−(nn̄) − iε)2(x2−(nn̄) − iε)2(x2
1 − iεx0

1)
. (4.34)

Notice that this expression is proportional to the light-like vector nμ determining the orientation
of the detector. Next, the integral over the detector time produces

(nn̄)

∞∫
−∞

dx2− lim
x2+→∞x2

2+n̄μGW
μ ∼ 1

((x1n) − iε)2(x2
1 − iεx0

1)
. (4.35)

Finally, performing the Fourier integral and reinstating the y/Q-structure from (4.33), we obtain

〈
Q(n)

〉 = σ−1
tot

∫
d4x1 eiqx1

∞∫
−∞

dx2−(nn̄) lim
x2+→∞x2

2+n̄μGW
μ = 〈Q〉

π

q2

(qn)2
, (4.36)

where 〈Q〉 was defined in (3.10). In the rest frame of the source, this relation coincides with (3.9)
and agrees with (4.14).

4.3.3. Single energy detector
Here we essentially repeat the calculation from [13]. The single-detector correlation of the

energy-flow operator (4.4) takes the form〈
E(n)

〉 = σ−1
tot

∫
d4x eiqx〈0|O(x,Y )E(n)O(0, Y )|0〉. (4.37)

As follows from (4.4) and (4.37), the energy correlator 〈E(n)〉 is determined by the three-point
function of two half-BPS operators and one energy–momentum tensor. In Euclidean space it is
given by

(GE)μν(1,2,3) = 〈0|O(x1, Y )T μν(x2)O(x3, Y )|0〉E
= −N2

c − 1

16π6

(YY )2

x2
12x

2
23x

2
13

(
x

μ
12

x2
12

+ x
μ
23

x2
23

)(
xν

12

x2
12

+ xν
23

x2
23

)
. (4.38)

Since the energy–momentum tensor is an SO(6) singlet, the R-symmetry tensor structure in
(4.38) is much simpler than before. Moreover, the isotopic factor in (4.38) is canceled by that of
the total transition probability σtot in the right-hand side of (4.37). Repeating the steps outlined
above, analytic continuation to the Wightman function, detector limit and time integration (see
(4.4)), followed by a Fourier transform, we obtain〈

E(n)
〉 = 1

4π

(q2)2

(qn)3
. (4.39)

For qμ = (q0, �0), we reproduce the result of the amplitude calculation (3.7), in accord
with (4.14).
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5. Double-detector correlations from four-point correlation functions

As was explained in the previous section, starting with two (or more) detector insertions we
have to deal with Wightman correlation functions involving four (or more) operators – two half-
BPS operators serving as the source/sink, and more than one flow operators serving as detectors.
Unlike the single-detector case discussed above, such functions are not protected from quan-
tum corrections and we expect them to have a complicated form order-by-order in the coupling
constant. As a consequence, the question about the analytic continuation of the Wightman func-
tions from their Euclidean counterparts becomes very non-trivial. In this section we explain the
procedure on the example of the double-detector correlations.

5.1. Energy–momentum tensor supermultiplet

We recall that the flow operators (4.4) and (4.5) are built from three protected operators – the
half-BPS scalar operator, the R-current and the energy–momentum tensor. It is well known that
in N = 4 SYM these operators belong to the same supermultiplet T (x,Y, θ, θ̄),

T (x,Y, θ, θ̄) = O(x,Y ) + · · · + (
θσμθ̄

)
Jμ(x,Y ) + · · ·

+ (
θσμθ̄

)(
θσ νθ̄

)
Tμν(x) + . . . , (5.1)

where we do not display the SU(4) indices. Its lowest component is the half-BPS operator (2.2)
and the higher components are obtained by successive use of N = 4 supersymmetry transforma-
tions.

The supermultiplet (5.1) has a number of remarkable properties. First of all, it is annihilated by
half of the N = 4 supercharges and, as a consequence, its expansion in powers of the Grassmann
variables (θ, θ̄ ) is shorter than one might expect. In particular, one corollary of supersymmetry
is the conservation of the R-current Jμ and of the energy–momentum tensor Tμν . Secondly,
N = 4 superconformal symmetry imposes strong constraints on the correlation functions of the
superfield (5.1). To compute the double-detector correlations, we need the four-point Euclidean
(super)correlation function

GE(1,2,3,4) = 〈0|T (x1, Y1, θ1, θ̄1) . . .T (x4, Y4, θ4, θ̄4)|0〉. (5.2)

Setting θ1,4 = θ̄1,4 = 0 in (5.2), we select the lowest component O at points 1 and 4, to play
the role of the source/sink. The flow operators (4.4) or (4.5) are then given by the relevant com-
ponents of the superfields at points 2 and 3. Setting all odd variables to zero, we obtain the
four-point correlation function of half-BPS operators

GE(1,2,3,4) = 〈0|O(x1, Y1)O(x2, Y2)O(x3, Y3)O(x4, Y4)|0〉. (5.3)

This is the starting point for the analysis of the scalar–scalar flow correlation. It is known [27,28]
that N = 4 superconformal symmetry allows one to reconstruct the complete super-correlation
function (5.2) in terms of its lowest component (5.3). Each term in the (θ, θ̄ ) expansion of (5.2)
is given by a particular differential operator acting on the coordinates xi of the scalar operators
in (5.3). Most importantly, these differential operators do not depend on the coupling constant.
Their explicit form for the cases of interest (the components involving one or two R-currents
and/or energy–momentum tensors) will be worked out in a forthcoming paper. Thus, to compute
the quantum corrections to the super-correlation function (5.2) it suffices to know the correlation
function of the four half-BPS operators (5.3).
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5.2. Four-point correlation function of half-BPS operators

The Euclidean four-point function of the half-BPS operators O20′ has been studied extensively

in [29–34]. It is convenient to split it into a sum of two terms, GE = G
(Born)
E +G

(loop)

E , describing
the Born approximation and the quantum corrections, respectively.

At Born level, the correlation function (5.3) is given by products of free scalar propagators
with the appropriate isotopic factors, Y I

1 YJ
2 〈ΦI (x1)Φ

J (x2)〉 ∼ y2
12/x

2
12, where we have intro-

duced the shorthand notation y2
ij = (YiYj ). Thus, we obtain

G
(Born)
E (1,2,3,4) = N2

c − 1

(4π2)4

(
y2

12

x2
12

y2
23

x2
23

y2
34

x2
34

y2
14

x2
14

+ y2
13

x2
13

y2
23

x2
23

y2
24

x2
24

y2
14

x2
14

+ y2
12

x2
12

y2
24

x2
24

y2
34

x2
34

y2
13

x2
13

)
+ (N2

c − 1)2

4(4π2)4

(
y4

12

x4
12

y4
34

x4
34

+ y4
13

x4
13

y4
24

x4
24

+ y4
14

x4
14

y4
23

x4
23

)
. (5.4)

It contains six distinct terms corresponding to the six channels in the tensor product of SU(4)

irreps 20′ × 20′ = 1 + 15 + 20′ + 84 + 105 + 175 (see Appendix D). A remarkable feature of
the correlation function (5.3) is that the loop corrections in all six channels are given by a single
function of two variables [32],

G
(loop)

E (1,2,3,4) = 2(N2
c − 1)

(4π2)4

[
y2

12y
2
23y

2
34y

2
41

x2
12x

2
23x

2
34x

2
41

(1 − u − v) + y2
12y

2
13y

2
24y

2
34

x2
12x

2
13x

2
24x

2
34

(v − u − 1)

+ y2
13y

2
14y

2
23y

2
24

x2
13x

2
14x

2
23x

2
24

(u − v − 1) + y4
12y

4
34

x4
12x

4
34

u + y4
13y

4
24

x4
13x

4
24

+ y4
14y

4
23

x4
14x

4
23

v

]
ΦE(u, v). (5.5)

Here ΦE(u, v) depends on the two conformal cross-ratios and admits a perturbative expansion,

ΦE(u, v) =
∞∑

�=1

a�Φ�(u, v), u = x2
12x

2
34

x2
13x

2
24

, v = x2
23x

2
14

x2
13x

2
24

. (5.6)

The functions Φ�(u, v) are currently known in terms of Euclidean scalar Feynman integrals up
to six loops (� = 6) [35]. The one-loop correction is given by the so-called one-loop box integral

ΦE(u, v) = aΦ(1)(u, v) + O
(
a2) = − a

4π2

∫
d4x0 x2

13x
2
24

x2
10x

2
20x

2
30x

2
40

+ O
(
a2). (5.7)

In Euclidean space, the function ΦE(u, v) has logarithmic singularities in the limit x2
ij → 0, that

corresponds to short-distance separations between the operators.
Let us apply (5.4) and (5.5) to obtain the correlation of two scalar flow operators 〈O(n)O(n′)〉,

Eq. (2.39), from the correlation function GE(1,2,3,4). At the first step, we associate the opera-
tors at points 4 and 1 with the source O(0, Y ) (we set x4 = 0) and the conjugate sink O(x1, Y ),
respectively. Further, the operators at points 2 and 3 are associated with the two detectors, i.e.,
the scalar flow operators O(n,S) and O(n′, S′), involving the real detector matrices SIJ and S′

IJ .
The description of the correlation function in (5.4) and (5.5) is holomorphic in the auxiliary null
vectors Yi at all four points. So, to match the isotopic structures of the two objects, we have to
make the substitutions Y → Y1, Y → Y4 and SIJ → Y2I Y2J , S′ → Y3I Y3J .
IJ
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Next, we recall that the scalar flow operators O(n,S) and O(n′, S′) do not commute for
generic detector matrices S and S′ because of a possible cross-talk between the detectors. To
avoid this unwanted cross-talk, when defining the scalar detector correlations we had to impose
the additional condition (2.38) on the detector matrices. Making the substitution SIJ → Y2I Y2J

and S′
IJ → Y3I Y3J described above, we find that the condition (2.38) on the scalar flow detectors

is translated into the orthogonality condition y2
23 = (Y2Y3) = 0 for the two half-BPS operators at

positions 2 and 3 in the internal SO(6) space. This condition eliminates half of the structures in
(5.4) and (5.5), leaving us with

Ĝ
(Born)
E = N2

c − 1

(4π2)4

y2
12

x2
12

y2
24

x2
24

y2
13

x2
13

y2
34

x2
34

+ (N2
c − 1)2

4(4π2)4

(
y4

12

x4
12

y4
34

x4
34

+ y4
13

x4
13

y4
24

x4
24

)
, (5.8)

and

Ĝ
(loop)

E = 2(N2
c − 1)

(4π2)4

[
y2

12y
2
13y

2
24y

2
34(v − u − 1) + y4

12y
4
34 + y4

13y
4
24u

] ΦE(u, v)

x2
12x

2
13x

2
24x

2
34

. (5.9)

Here we dressed the symbols in the left-hand side of these equations with hats to indicate that
both expressions have been evaluated for y2

23 = 0. Comparing these relations with the general ex-
pressions (5.4) and (5.5), we observe that the suppression of the cross-talk between the detectors
has a simple interpretation in terms of the correlation function. Namely, the condition y2

23 = 0
eliminates the most singular terms in (5.4) and (5.5) in the short-distance limit x2

23 → 0.
To conclude the discussion of how to match the isotopic structures of the correlation function

of four half-BPS operators in (5.8) and (5.9) and that of the double scalar flow correlation, we
give the translation table between the SO(6) invariant y- and Y/S-structures, after imposing the
condition y2

23 = 017:

y2
12y

2
13y

2
24y

2
34 → (YSY )

(
YS′Y

)
,(

y2
12y

2
34

)2 → (YSY )
(
YS′Y

)
,(

y2
13y

2
24

)2 → (
YS′Y

)
(YSY ). (5.10)

The next step is to use relations (5.8) and (5.9) to obtain the Wightman correlation function
of four half-BPS operators.

5.3. Analytic continuation

Let us first examine the contribution to 〈O(n)O(n′)〉 coming from the Born level approxima-
tion to the correlation function (5.8).

A distinguishing feature of Ĝ
(Born)
E is that, like the three-point function (4.23), it is a ra-

tional function of the distances x2
ij . This suggests that we can obtain the Wightman function

Ĝ
(Born)
W (1,2,3,4) by replacing x2

ij → (x2
ij − iεx0

ij ) (for i < j ) on the right-hand side of (5.8).

Notice that the Wightman function is not invariant under the exchange of points and the ‘−iεx0
ij ’

prescription indicates that the operator at point xi stands to the left from the operator at point
xj inside Ĝ

(Born)
W (1,2,3,4). Since we assigned the points 4 and 1 to the source and to its com-

plex conjugated image (sink), respectively, and the points 2 and 3 to the detectors, the above

17 See Appendix D for more details.



236 A.V. Belitsky et al. / Nuclear Physics B 884 (2014) 206–256
rule should be applied to all factors of 1/x2
ij with i < j except 1/x2

23. Notice that, in virtue of the
commutativity of the flow operators, the Wightman function should be insensitive to the ordering
of the operators located at points x2 and x3. Indeed, it is easy to see from (5.8) that Ĝ

(Born)
W is

regular at x2
23 = 0. The same is true for the expression in the square brackets in (5.9).

To compute 〈O(n)O(n′)〉, we convert (5.8) into a Wightman function and go to the detector
limit by putting x4 = 0 and identifying the coordinates of points 2 and 3 as x2 = x2+n+x2−n̄ and
x3 = x3+n′ + x3−n̄′. Then, for x2+, x3+ → ∞, we notice that the second term on the right-hand
side of (5.8) gives rise to an expression containing double poles in x2− and x3−. These poles are
located in the same half-plane and, therefore, vanish upon integration over x2− and x3−. In this
way, with the help of (5.10) we obtain

〈
O(n)O

(
n′)〉(Born) = σ−1

tot

∫
d4x1eiqx1

∞∫
−∞

dx2−dx3− lim
x2+,x3+→∞(x2+x3+)2 Ĝ

(Born)
W

∼
∫

d4x1eiqx1

∞∫
−∞

dx2−dx3−〈S〉〈S′〉
(x12− − iε)(x2− − iε)(x13− − iε)(x3− − iε)

∼
∫

d4x1eiqx1
〈S〉〈S′〉

((x1n) − iε)((x1n′) − iε)
, (5.11)

where in the second relation x12− = (x1n) − x2−, x13− = (x1n
′) − x3− and 〈S〉 was defined in

(3.13). The Fourier integral in the last relation reduces to
∫ ∞

0 dtdt ′δ(4)(q − nt − n′t ′). It is easy
to see that, in the rest frame of the source, for qμ = (q0, �0), nμ = (1, �n) and n′ μ = (1, �n′), it
vanishes unless �n = −�n′. The latter case corresponds to detecting particles moving back-to-back
and it produces a contribution proportional to δ(1 − z). This result is in agreement with the
calculation of 〈O(n)O(n′)〉(Born) based on the amplitudes, Eq. (3.14). Namely, at Born level,
for qμ = (q0, �0), the final state in O20′ → everything consists of two scalar particles moving
back-to-back. They can be detected only for �n = −�n′, corresponding to z = 1 in (4.15). Thus, for
z < 1, the correlation function contributes to the event shape function FO(z) defined in (4.17)
only starting from order O(a).

Let us now repeat the same analysis for the Euclidean correlation function (5.9). The main
difficulty in this case is that it involves a complicated function of the two cross-ratios. How to
convert it to the Wightman function ΦW(u,v)? The answer to this question was proposed in [36]
and a particularly elegant formulation was given in Ref. [37]. It relies on the Mellin representation
of the correlation function,

ΦE(u, v) =
−δ+i∞∫

−δ−i∞

dj1dj2

(2πi)2
M(j1, j2)u

j1vj2, (5.12)

where u,v > 0 in Euclidean space and M(j1, j2) is a meromorphic function of the Mellin pa-
rameters.

At weak coupling, the Mellin amplitude is given by a perturbative expansion in a = g2/(4π2),

M(j1, j2;a) =
∑

a�M(�)(j1, j2). (5.13)

�≥1
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For our purposes here, we will only need the lowest-order term,

M(1)(j1, j2) = −1

4

[
Γ (−j1)Γ (−j2)Γ (j1 + j2 + 1)

]2
, (5.14)

which is obtained by rewriting the one-loop box integral in (5.7) in the Mellin form [35]. At
strong coupling in planar N = 4 SYM, the Mellin amplitude was computed in [38–40] via the
AdS/CFT correspondence,

M(∞)(j1, j2;a) = −[
Γ (1 − j1)Γ (1 − j2)Γ (j1 + j2 + 1)

]2 1 + j1 + j2

2j1j2
. (5.15)

The invariance of the correlation function G(1,2,3,4) under the exchange of any pair of
points (xi, Yi) ↔ (xj , Yj ) leads to the crossing symmetry relations

ΦE(u, v) = ΦE(v,u) = 1

v
ΦE

(
u

v
,

1

v

)
, (5.16)

which translate into relations for the Mellin amplitude,

M(j1, j2) = M(j2, j1) = M(j1,−1 − j1 − j2). (5.17)

It is easy to check that the Mellin amplitudes (5.14) and (5.15) verify these relations.
According to [37], the Mellin amplitude M(j1, j2) is a universal function, depending neither

on the space–time signature, nor on the ordering of the operators in the four-point correlation
function. Extending (5.12) to Minkowski space, we have to specify the analytic continuation of
(x2

ik)
j to negative x2

ik for arbitrary complex j . The choice of the prescription is determined by
the ordering of the operators. In the special case of the Wightman function GW(1,2,3,4), the
prescription is (x2

ik)
j → (−x2

ik + iεx0
ik)

j for i < k.18 In this way, we obtain from (5.12)

ΦW(1,2,3,4) =
−δ+i∞∫

−δ−i∞

dj1dj2

(2πi)2
M(j1, j2;a)

(−x2
13 + iεx0

13

)−j1−j2
(−x2

24 + iεx0
24

)−j1−j2

× (−x2
12 + iεx0

12

)j1
(−x2

34 + iεx0
34

)j1
(−x2

23 + iεx0
23

)j2
(−x2

14 + iεx0
14

)j2 .

(5.18)

Notice that ΦW is locally conformally invariant. It coincides with ΦE(u, v) for all x2
ij < 0 and

differs otherwise.
For our purposes we will only need the Wightman function (5.18) in the detector limit. As

before, we assign points 4 and 1 to the source and sink, respectively, and points 2 and 3 to the
detectors. We put x4 = 0, x2 = x2+n + x2−n̄, x3 = x3+n′ + x3−n̄′ and take the limit x2+, x3+ →
∞ to get19

lim
x2+,x3+→∞ΦW(1,2,3,4) =

−δ+i∞∫
−δ−i∞

dj1dj2

(2πi)2
M(j1, j2;a)f (j1, j2 + 1), (5.19)

where the notation was introduced for the function

18 For time-ordered operators, the same prescription looks as (x2
ik

)j → (−x2
ik

+ iε)j with the additional minus sign
due to our choice of signature (+,−,−,−) for Minkowski and (+,+,+,+) for Euclidean space.
19 Here we have assumed that the detector limit commutes with the Mellin integral.
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f (j1, j2) = ((
nn′)/2

)−j1−j2
(−x2

1 + iεx0
1

)−j1−j2

× (
(x1n) − x2−(nn̄) − iε

)j1
(−x2−(nn̄) + iε

)j2

× ((
x1n

′) − x3−
(
n′n̄′) − iε

)j2
(−x3−

(
n′n̄′) + iε

)j1 . (5.20)

In what follows the dependence of f (j1, j2) on the coordinates x1, x2− and x3− is tacitly as-
sumed. To obtain (5.19), we replaced the integration variable j2 → −1 − j1 − j2 and made use
of (5.17). Viewed as a function of the detector times x2− and x3−, the expression in the right-
hand side of (5.20) has singularities located on both sides of the real axis. This ensures that the
integrals over the detector times x2− and x3− do not vanish.

5.4. Master formulas

We are now ready to perform the detector limit of the four-point Wightman correlation func-
tion. Combining together (5.9), (5.10) and (5.19), we find

lim
x2+,x3+→∞(x2+x3+)2Ĝ

(loop)

W

= 4σtot

(2π)7(nn′)2

(−x2
1 + iεx0

1

)−2
−δ+i∞∫

−δ−i∞

dj1dj2

(2πi)2
M(j1, j2;a)

× [〈S〉〈S′〉f (j1 − 1, j2 − 1) + 〈
S,S′〉f (j1 − 1, j2) + 〈

S,S′〉f (j1, j2 − 1)
]
, (5.21)

where σtot is given by (2.10). Here we see three independent R-symmetry structures,

〈
S,S′〉 = (YSY )(YS′Y) − (YSY )(YS′Y)

(YY )2
,

〈
S,S′〉 = 〈

S,S′〉∗, 〈S〉 = (YSY )

(YY )
. (5.22)

Each of them is accompanied by the function f (j1, j2) with shifted arguments.
Finally, to obtain the correlation 〈O(n)O(n′)〉 we have to integrate both sides of (5.21) over

the detectors times, x2− and x3−, and perform the Fourier transform with respect to x1. Assuming
that the order of integrations can be exchanged, we find from (5.21)

〈
O(n)O

(
n′)〉 = 1

4π2q2(nn′)

−δ+i∞∫
−δ−i∞

dj1dj2

(2πi)2
M(j1, j2;a)

[〈S〉〈S′〉K(j1, j2; z)

+ 〈
S,S′〉K(j1, j2 + 1; z) + 〈

S,S′〉K(j1 + 1, j2; z)
]
, (5.23)

where we introduced a notation for

K(j1, j2; z) = 1

8π5

q2

(nn′)

∫
d4x1eiqx1

(−x2
1 + iεx0

1)2

×
∞∫

dx2−(nn̄)

∞∫
dx3−

(
n′n̄′)f (j1 − 1, j2 − 1;x1, x2−, x3−). (5.24)
−∞ −∞
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Changing the integration variables, x2− → x2−/(nn̄) and x3− → x3−/(n′n̄′), we verify using
(5.20) that K(j1, j2; z) is dimensionless and invariant under (independent) rescalings of the light-
like vectors n and n′. Therefore, K(j1, j2; z) can depend on the four-dimensional vectors only
through the scaling variable z defined in (4.15). Going through the calculation of (5.24) we find
(see Appendix E for details)

K(j1, j2; z) =
(

z

1 − z

)1−j1−j2 2π

sin(π(j1 + j2))[Γ (j1 + j2)Γ (1 − j1)Γ (1 − j2)]2
, (5.25)

where 0 < z < 1. The function K(j1, j2; z) characterizes the scalar detectors. It is a symmetric
function of j1 and j2 and, most importantly, it is independent of the coupling constant. In what
follows we refer to this functions as the detector kernel.

Relation (5.23) agrees with the general expression for the scalar detector correlation in (4.17).
It leads to the following remarkable master formula for the event shape function FOO(z)

FOO(z) = 〈S〉〈S′〉F+
OO(z) + (〈

S,S′〉 + 〈
S,S′〉)F−

OO(z), (5.26)

where F±
OO(z) are given by the Mellin integrals

F+
OO(z) =

−δ+i∞∫
−δ−i∞

dj1dj2

(2πi)2
M(j1, j2;a)K(j1, j2; z),

F−
OO(z) =

−δ+i∞∫
−δ−i∞

dj1dj2

(2πi)2
M(j1, j2;a)K(j1, j2 + 1; z). (5.27)

These relations establish the correspondence between the four-point Euclidean correlation func-
tion of half-BPS operators and the double-scalar detector correlation. Given the correlation
function GE(1,2,3,4) in the form (5.5), we start by extracting the Mellin amplitude M(j1, j2;a)

from (5.12). Then we obtain the event shape function FO(z) by integrating the Mellin amplitude
in the Mellin space with the kernel K(j1, j2; z), which is uniquely fixed by the choice of the
detectors. In this representation, the dependence on the coupling constant resides in the Mellin
amplitude M(j1, j2;a), whereas the z-dependence comes from the detector kernel K(j1, j2; z).

5.5. One-loop check

To illustrate the power of the master formula (5.26), let us use the known one-loop expression
for the Mellin amplitude (5.14) to compute the event shape functions (5.27) to the lowest order
in the coupling. Taking into account (5.25), we find

M(j1, j2;a)K(j1, j2; z) = −a

2

(
z

1 − z

)1−j1−j2 π(j1 + j2)
2

(j1j2)2 sin(π(j1 + j2))
+ O

(
a2),

M(j1, j2;a)K(j1, j2 + 1; z) = a

2

(
z

1 − z

)−j1−j2 π

j2 sin(π(j + j ))
+ O

(
a2). (5.28)
1 1 2
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To perform the Mellin integration in (5.27) it is useful to shift the integration variable as j2 →
j2 − j1. In this way, we obtain

F+
OO(z) = −a

2

−δ+i∞∫
−δ−i∞

dj1dj2

(2πi)2

πj2
2

(j1(j2 − j1))2 sin(πj2)

(
z

1 − z

)1−j2

+ O
(
a2), (5.29)

where the j2-integration contour goes to the left from the one over j1. The integral can be easily
computed by residue method after closing the j1-integration contour in the right half-plane and
the j2-integration contour in the left half-plane. Then, the integral is given by the residues at
j1 = 0 and j2 = −k (with k = 1,2, . . .)

F+
OO(z) = −a

∞∑
k=1

(−1)k

k

(
z

1 − z

)1+k

+ O
(
a2) = −a

z

1 − z
ln(1 − z) + O

(
a2). (5.30)

Going through the same steps for (5.28) we find

F−
OO(z) = a

2

−δ+i∞∫
−δ−i∞

dj1dj2

(2πi)2

π

j2
1 sin(πj2)

(
z

1 − z

)−j2

+ O
(
a2), (5.31)

where the integration contours are the same as in (5.29). The main difference, however, is that
the integrand has only a double pole at j1 = 0 and, therefore, the j1-integral vanishes,

F−
OO(z) = O

(
a2). (5.32)

Substituting (5.30) and (5.32) into the master formula (5.26) we notice that, firstly, the one-loop
correction to the event shape function does not receive a contribution proportional to 〈S,S′〉
and, secondly, the coefficient of 〈S〉〈S′〉 coincides with the one-loop result (4.18) based on the
amplitude calculation.

6. Generalization of the master formulas

In this section we extend our previous analysis to the general case of double-detector correla-
tions (4.16) and (4.17) involving scalar, charge and energy flow operators. As was explained in
Section 4.2, these correlations are uniquely specified by the event shape functions depending on
the scaling variable 0 < z < 1.

To compute the event shape functions (4.16) and (4.17), we can follow the same procedure
as before. Namely, we start with the four-point correlation functions involving two half-BPS
operators (for the source and sink) and various components of the stress-tensor supermultiplet
(5.1) (for the two detectors), analytically continue them to get the corresponding Wightman func-
tions, and finally go to the detector limit to compute the double-detector correlations. We recall
that the various four-point functions of this type appear as particular components in the ex-
pansion of the super correlation function GE(1,2,3,4), Eq. (5.2), in powers of the Grassmann
variables.

According to Section 5.1, the super correlation function can be obtained from its lowest com-
ponent GE(1,2,3,4) by applying a (complicated) differential operator. This operator does not
depend on the coupling constant, so the perturbative corrections to GE(1,2,3,4) are described
by the unique scalar function Φ(u,v) from (5.5) and by its derivatives. Therefore, in order to get
the Wightman function GW(1,2,3,4) it suffices to replace Φ(u,v) by its Wightman counterpart
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ΦW(u,v) defined in (5.18). Then, using the Mellin representation (5.19) and going through the
same steps as in the previous subsection, we obtain the following general representation for the
event shape function (4.17)20

FAB(z) =
∑
R

ωRFAB;R(z),

FAB;R(z) =
∫

dj1dj2

(2πi)2
M(j1, j2;a)KAB;R(j1, j2; z). (6.1)

Here the subscripts A,B = O,Q,E denote the type of detectors (scalar, charge or energy)
and M(j1, j2;a) is the universal (detector independent) Mellin amplitude defined in (5.12) and
(5.13).

For the scalar and charge detectors, the event shape function (6.1) also depends on the detector
matrices SIJ and QB

A , respectively. This dependence enters into (6.1) through the R-symmetry
invariant factors ωR built from the matrices S,Q and from the auxiliary variables Y,Y defining
the source and the sink (see Eqs. (3.24) and (5.22)). The set of such factors is in one-to-one
correspondence with the set of R-symmetry structures that appear in the four-point correlation
function 〈0|O(1, Y )A(2)B(3)O(4, Y )|0〉, which we use to compute the event shape function
(6.1). Denoting by A and B the R-symmetry representations of the two detectors (20′ for scalar,
15 for charge and 1 for energy flow), we can identify the above mentioned structures with the
overlap of irreducible representations in the tensor products A×B and 20′ ×20′. They are labeled
by the index R on the right-hand side of (6.1). In the detector limit, each irreducible component
R of the four-point correlation function gives rise to the detector kernel KAB;R(j1, j2; z). As was
already explained, this kernel depends on the Mellin variables j1 and j2 and the scaling variable
z but does not depend on the coupling constant.

Let us first consider the kernels KEE , KEQ and KEO involving the energy flow. Since the
energy flow is an R-symmetry singlet, the overlap of the two tensor products 1 × B and 20′ × 20′
consists of a single irreducible structure and, therefore, the sum in (6.1) reduces to a single term
involving ωEE

1 , ωEQ
15 and ωEO

20′ (see (D.13)). Quite remarkably, in these three cases the detector
kernels turn out to be equal to the scalar–scalar kernel K defined in (5.25):

KEE;1 = KEQ;15 = KEO;20′ = K(j1, j2; z). (6.2)

As a consequence of these relations, the corresponding event shape functions FEE (z), FEQ(z)

and FEO(z) are proportional to each other for any coupling constant. We interpret this as a
corollary of N = 4 superconformal symmetry which uniquely fixes the correlation functions
〈OT T O〉, 〈OT JO〉 and 〈OT OO〉, starting from 〈OOOO〉.

The remaining kernels KOO , KQO and KQQ have a more complicated structure. We found
however that, similarly to (6.2), they can be expressed in terms of the function K , Eq. (5.25).
For A = B = O the range of irreducible representations R in (6.1) corresponds to the tensor
product

20′ × 20′ = 1 + 15 + 20′ + 84 + 105 + 175, (6.3)

20 Here we give a short summary of the results, the details will be presented elsewhere. In obtaining them we have used
the Mathematica package xAct [41], especially the application package Spinors [42].
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Table 1
Scalar–scalar correlations. The first column lists the various channels R in the tensor product (6.3). The second column
gives the polynomial of shift operators which acts on the kernel K(j1, j2; z), Eq. (5.25), according to (6.4). The third
and fourth columns list the event shape functions FOO;R at one loop and at strong coupling, respectively. They were
obtained from (6.1) using (5.14) and (5.15).

〈OO〉 POO
R

(t1, t2) F (1)
OO;R F (∞)

OO;R
1 t2

1 + t2
2 + 4t1t2 − 4

5 (t1 + t2) + 1
10 ∞ ∞

15 t2
1 − t2

2 − 1
2 (t1 − t2) 0 0

20′ (t1 − t2)2 − 1
2 (t1 + t2) + 1

10 − 1
10

z ln(1−z)+10(1−z) ln z
1−z

∞
84 3(t1 + t2) − 1 z ln(1−z)

1−z
∞

175 t1 − t2 0 0

105 1 − z ln(1−z)
1−z

2z3

and the six structures ωOO
R are listed in (D.2). The kernel for each channel can be written as a

differential operator acting on K ,

KOO;R(j1, j2; z) = POO
R (t1, t2)K(j1, j2; z), (6.4)

where ti = e∂ji (for i = 1,2) and POO
R are polynomials in t1 and t2 listed in Table 1.21

Several comments are in order regarding this table. Each polynomial POO
R (t1, t2) corresponds

to a particular irreducible representation R of SU(4) appearing in the decomposition (6.3). Com-
paring these polynomials with those listed in (D.4), we notice that POO

R (t1, t2) coincide with the
eigenfunctions of the quadratic Casimir of SU(4) in the ‘mirror’ representation(

POO
1 ,POO

15 ,POO
20′ ,POO

84 ,POO
175 ,POO

105

) = (Y105,Y175,Y84,Y20′ ,Y15,Y1). (6.5)

In particular, we have POO
105 = Y1 = 1, with the corollary

KOO;105 = K(j1, j2; z). (6.6)

Secondly, from Table 1 we see that the event shape functions FOO(z) in the channels 15
and 175 vanish identically. This is due to the antisymmetry of the kernels KOO;15 and KOO;175
under the exchange of j1 ↔ j2, which is incompatible with the symmetries of M(j1, j2), as can
be seen in (5.17).

Thirdly, Table 1 lists the contributions to FOO(z) in two regimes, at weak coupling (one
loop) and at strong coupling.22 We observe the presence of divergences, at one loop in the singlet
channel, and at strong coupling in all non-vanishing channels but the 105. The appearance of
divergences at weak coupling is not surprising and is related to the cross-talk between scalar de-
tectors, as explained in Section 2.2.3. We recall that the cross-talk can be eliminated by imposing
the additional condition on the detector matrices, [S,S′] = 0, Eq. (2.38). As explained in Sec-
tion 5.2 (see also Eq. (D.5)), this condition has the effect of suppressing half of the y-structures
in (5.4) and (5.5), see (5.8) and (5.9). Equivalently, half of the irreps on the right-hand side of
(6.3) also drop out, namely 1, 15 and 20′. So, we can reinterpret [S,S′] = 0 as a condition for

21 Notice that ti are conjugate variables to ji in the sense [ti , jk] = δikti . In practice, they act as shifts of the arguments
of the kernel.
22 The correlation function and its Mellin amplitude at strong coupling were computed in [38–40]. More details about
the event shapes at strong coupling will be presented elsewhere.
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Table 2
Charge-scalar correlations. The channel 20′ vanishes identically for symmetry reasons. The channel 15 is removed by
the condition (D.6).

〈QO〉 P
QO
R

(t1, t2) F (1)
QO;R F (∞)

QO;R
15 1

2 (t1 + t2 − 1
4 )

ln(1−z)
8(1−z)

∞
20′ 1

2 (t1 − t2) 0 0

175 1 −z
ln(1−z)

1−z
2z2

removing some of the divergences in the Mellin integrals. In the absence of this condition the
channel 20′ remains finite at one loop, but diverges at strong coupling.23 The two remaining
channels 84 and 105 give finite contributions at one loop, but the former diverges at strong cou-
pling. We can avoid this divergence if we impose a stronger condition, Y2 = Y3 (see (D.6)). Its
effect is to suppress all channels but the 105, which turns out to be finite both at one loop and at
strong coupling.

Our next choice of detectors is A=Q and B =O. In this case, the sum in (6.1) runs over the
overlap of irreducible representations in the tensor product

15 × 20′ = 15 + 20′ + 45 + 45 + 175, (6.7)

with those in (6.3), i.e. R = 15,20′,175. We can represent the results in a manner similar to the
scalar case discussed above, introducing

KQO,R(j1, j2; z) = PQO
R (t1, t2)K(j1, j2; z), (6.8)

where the kernel K and t1, t2, are defined in Eqs. (5.25) and below (6.4), respectively. The
results are summarized in Table 2. The channel 20′ is antisymmetric under the exchange of
(j1, j2) which results in an identically vanishing contribution. The channel 15, while finite at
one loop, diverges at strong coupling and only the 175 yields a finite contribution in this regime.
The strong-coupling correlations can be rendered finite again by imposing the stronger condition
(D.6), which eliminates all channels apart from the 175.

With the choice A= B =Q we are dealing with the overlap of (6.3) and

15 × 15 = 1 + 15s + 15a + 20′ + 45 + 45 + 84, (6.9)

which consists of the irreps 1 + 15a + 15s + 20′ + 84 (notice the degeneracy of the 15, appearing
in a symmetric and an antisymmetric versions). Once again, the kernels of all channels can be
written in the form

KQQ,R(j1, j2; z) = PQQ
R (t1, t2, z)K(j1, j2; z), (6.10)

and we have tabulated the polynomials PQQ
R in Table 3. An interesting new feature is that PQQ

1
and PQQ

20′ explicitly depend on z. At one loop we need no condition since all five channels
are finite (the two channels 15s and 15a give identically vanishing contributions for symmetry
reasons). However, at strong coupling we again observe a divergence in the singlet channel. The
difference with the previous case is that now the singlet can only be removed by imposing a
stronger condition Y2 = Y3. Its effect is to suppress all channels but the 84, which is finite both
at one loop and at strong coupling.

23 A mechanism to tame them is discussed at length in Refs. [13,14].
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Table 3
Charge–charge correlations. Notice that the polynomial in this case explicitly depends on the variable z. The channel 15s
vanishes identically for symmetry reasons. The channels 1 and 20′ are removed by the condition Y2 = Y3.

〈QQ〉 P
QQ
R

(t1, t2, z) F (1)
QQ;R F (∞)

QQ;R
1 2

3 (1 + 15(t1 + t2) + 25 1−z
z ) − 2(25−24z) ln(1−z)

3(1−z)
∞

15a t1 − t2 0 0

15s 0 0 0

20′ 5
3 (3 − 4

z ) −5 (3z−4) ln(1−z)
3(1−z)

10(3z−4)z2

3

84 1 − z ln(1−z)
(1−z)

2z3

Summarizing the various tables above, we remark the following interesting property, gener-
alizing (6.2) and (6.6). For all choices of the two detectors, the kernels corresponding to the
R-symmetry channel with the highest value of the quadratic Casimir of SU(4), are identical:

KEE;1 = KEQ;15 = KEO;20′ = KQQ;84 = KQO;175 = KOO;105. (6.11)

This is a non-obvious corollary of N = 4 superconformal symmetry, which will be investigated
in our future work [43].

Finally, putting together the one-loop results for the event shape functions (6.1) from the dif-
ferent tables, we exactly reproduce the one-loop results of the amplitude calculations (without
rearrangement into irreducible R-symmetry representations) listed in (4.18) and (4.19). For in-
stance,

FQQ(z) =
∑

R=1,15s ,15a,20′,84

ωQQ
R FQQ;R(z), (6.12)

with ωQQ
R given by (D.12).

7. Conclusions

In this paper we studied the weighted cross sections describing the angular distribution of vari-
ous global charges (energy, R-charge) in the final states of N = 4 SYM created from the vacuum
by a source. We applied the approach developed in the companion paper [14] and computed them
starting from Euclidean correlation functions both at weak and strong coupling.

The starting point of our analysis was a relation between the weighted cross sections and
Wightman correlation functions involving various flow operators. We defined three different
types of the flow operators based on certain components of the N = 4 stress-tensor multiplet: the
half-BPS scalar operators, the R-symmetry currents and the energy–momentum tensor. In addi-
tion, we used the half-BPS scalar operator as a source that creates the physical state out of the
vacuum. Then, the weighted cross section is determined by the Wightman correlation function
involving different components of the N = 4 stress-energy multiplet in a particular detector limit
which includes sending some of the operators to the null infinity and subsequently integrating
over their light-cone coordinates.

The Euclidean version of such correlation functions have a number of remarkable properties in
N = 4 SYM. In particular, three- and four-point correlators of operators belonging to the N = 4
stress-energy multiplet are uniquely determined by analogous correlation functions of half-BPS
scalar operators. The corresponding relations do not depend on the coupling constant and will
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be explained in more detail in an upcoming publication. The next step consisted in the analytical
continuation of the Euclidean correlation functions to their Wightman counterparts following the
Lüscher–Mack procedure [36]. We demonstrated that the most efficient and convenient way to
do this is via the Mellin representation for the correlation functions.

In this way, we derived a master formula which yields an all-loop expression for the weighted
cross sections as a convolution of the Mellin amplitude, defined by the Euclidean correlation
function, with a coupling-independent ‘detector kernel’ determined by the choice of the flow
operators. We performed thorough checks for single- and double-detector correlations to leading
order at weak coupling and found perfect agreement with the conventional amplitude calcula-
tions of the corresponding observables in N = 4 SYM. We would like to emphasize that our
approach is applicable to all orders in the weak coupling expansion as well as at strong coupling.
In the latter case, we made use of the prediction for the four-point correlation functions of half-
BPS operators, obtained via the AdS/CFT correspondence, to compute the double correlations at
strong coupling.

There are several directions in which the construction presented in this paper can be extended
even further. Notice that the Mellin amplitude for the four-point correlation function of half-BPS
operators is known to two loops and it should be possible to extend it beyond using the recent
progress in computing the correlation function up to six loops [44]. This opens up a possibility to
compute the flow correlations at higher orders of perturbative expansion and confront them with
techniques based on Keldysh–Schwinger diagram technique [45]. We will address this question
in a forthcoming publication.

Another important issue that has to be developed further concerns remarkable relations be-
tween the detector kernels corresponding to different flow operators and in different R-symmetry
channels, Eqs. (6.2), (6.6) and (6.11). They lead to analogous relations between the weighted
cross sections. We expect that there should exist a supersymmetric Ward identity that directly
relates various weighted cross section studied in this paper. Finally, infrared finiteness of the
charge flow correlations at weak coupling, the origin of the divergences at strong coupling in
some R-symmetry channels require a more detailed study. These and other issues will be ad-
dressed elsewhere.
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Appendix A. Cross-talk between scalar detectors

By construction, the flow operators should commute with each other. As was mentioned in
Section 2.2, this property is not obvious from their operator definition, Eqs. (2.14), (2.19) and
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(2.28), due to the possibility for the same particle to go subsequently through various detec-
tors. For two detectors oriented along two different spatial directions �n and �n′, the momentum
of such a particle should vanish. This means that the commutator of the flow operators, say
[O(�n;S),O(�n′;S′)], can receive a contribution from particles with zero momenta only. To
investigate this, we use the representation of the scalar flow operator (2.33) in terms of anni-
hilation/creation operators of scalars combined with the identity24

∞∫
0

dτ τ�δ(4)(k − nτ) = 2k�−1
0 δ+

(
k2)δ(2)(Ω�k − Ω�n) (A.1)

with nμ = (1, �n) being a light-like vector, n2 = 0. Thus, we obtain an equivalent representation
for the flow operator (for � = 0),

O(�n;S) = 1

2(2π)3

6∑
i=1

Si

∞∫
0

dτ
(
φia†(nτ)

)(
φia(nτ)

)
, (A.2)

where (φia(nτ)) ≡ ∑6
I=1 φi

I a
I (nτ). Notice that each additional factor of k0 on the right-hand

side of (A.1) is translated into a factor of τ in the integral on the left-hand side. This implies that
the charge and energy flow operators, Q(�n;Q) and E(�n), respectively, admit a representation
similar to (A.2) with the important difference that the τ -integral involves additional factors of τ

and τ 2, respectively (see Eq. (4.6)).
Making use of the commutation relation[

aI (k), a†J (p)
] = (2π)32k0δ

(3)(�k − �p)δIJ , (A.3)

we find from (A.2)

[
O(�n;S),O

(�n′;S′)] = 1

2(2π)3

6∑
i,j=1

SiS
′
j

(
φiφ′ j ) ∞∫

0

dτ1dτ2 τ2δ
(3)

(
τ1�n − τ2�n′)

× [(
φia†(nτ1)

)(
φ′ j a

(
n′τ2

)) − (
φ′ j a†(n′τ2

))(
φia(nτ1)

)]
, (A.4)

where φi,φ′ j and S,S′ define the detector matrices (2.32) and (φiφ′ j ) = ∑6
1 φi

I φ
′ j
I . The delta

function localizes the τ -integral at τ1 = τ2 = 0 but leads to an ambiguous expression of the form
0 × δ(0). To carefully evaluate it we approximate the delta function and examine the following
test integral involving an arbitrary test function f (τ1, τ2)

∞∫
0

dτ1dτ2 τ2δ
(3)

(
τ1�n − τ2�n′)f (τ1, τ2)

= lim
ε→0

(πε)−3/2

∞∫
0

dτ1dτ2 τ2e−(τ1 �n−τ2 �n′)2/εf (τ1, τ2)

= π−3/2

∞∫
0

dτ1dτ2 τ2e−(τ1�n−τ2 �n′)2
lim
ε→0

f
(
ε1/2τ1, ε

1/2τ2
) = 1

4π

f (0,0)

1 − (�n�n′)
, (A.5)

24 To verify this identity it suffices to integrate both sides with a test function.
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where in the second relation we rescaled the integration variables as τi → ε1/2τi . Applying this
identity to an appropriately chosen function f (τ1, τ2) we find from (A.4)[

O(�n;S),O
(�n′;S′)]

= 1

4(2π)4

6∑
i,j=1

SiS
′
j (φ

iφ′ j )
1 − (�n�n′)

[(
φia†(0)

)(
φ′ j a(0)

) − (
φ′ j a†(0)

)(
φia(0)

)]
= 1

4(2π)4

a†I (0)(SS′ − S′S)IJ aJ (0)

1 − (�n�n′)
, (A.6)

where in the second relation we applied (2.32).
We conclude from (A.6) that, for general detector matrices S and S′, the scalar flow opera-

tors do not commute. Moreover, in agreement with our expectations, the commutator receives a
contribution from particles with zero momentum only. We recall that for the charge and energy
flow operator, the integral representation analogous to (A.2) contains additional factors of τ . Cal-
culating [O(�n;S),Q(�n′;Q)] and [O(�n;S),E(�n′)] as in (A.6), we find that the additional factor
of τ makes both commutators vanish. The same applies to all remaining commutators involving
charge and energy flow operators.

Appendix B. SU(4) versus SO(6)

To simplify the R-symmetry structure of the correlation functions, throughout the paper we
use two different but equivalent sets of isotopic (or harmonic) variables, Y I and (yAB, ỹAB). The
former defines a complex SO(6) null vector

∑6
I=1 Y IY I = 0, whereas the latter carries a pair of

SU(4) indices A,B = 1, . . . ,4 and satisfies the relations

yBA = −yAB, ỹAB = 1

2
εABCDyCD. (B.1)

The variables Y and y are related to each other as follows:

YI = 1√
2
(ΣI )

AByAB, yAB = 1√
2
εABCD(ΣI )

CDYI , (B.2)

where (ΣI )
AB are the (chiral) Dirac matrices for SO(6). They satisfy the relations

6∑
I=1

(ΣI )
AB(ΣI )

CD = 1

2
εABCD,

1

2
εABCD(ΣI )

AB(ΣJ )CD = δIJ (B.3)

and can be expressed in terms of the ’t Hooft symbols ΣAB
I = (ηAB

I , iη̄AB
I ) [46]. Combining

(ΣI )
AB with their complex conjugates (Σ̄I )AB = (ΣI )AB , we obtain the generators of the fun-

damental representation of SU(4):

(ΓIJ )AC = −(ΓJI )
A
C = 1

2
(ΣI )

AB(Σ̄J )BC − (I ↔ J ), (ΓIJ )AA = 0. (B.4)

We then use (B.2) and (B.3) to get the following identity

(Y1Y2) ≡
∑
I

Y I
1 Y I

2 = 1

4
εABCD(y1)AB(y2)CD = 1

2
(y1)AB(ỹ2)

AB

= 1
(y2)AB(ỹ1)

AB. (B.5)

2
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In the special case Y I
1 = Y I

2 , or equivalently (y1)AB = (y2)AB , it follows from (Y1Y1) = 0 that

1

2
εABCD(y1)AB(y1)CD = (y1)AB(ỹ1)

AB = 0. (B.6)

Making use of (B.1) and (B.2) we can obtain two equivalent representations for various operators
in terms of SO(6) and/or SU(4) harmonic variables.

In particular, the projected scalar field admits two representations,

(YΦ) =
∑
I

Y IΦI = yABφAB = ỹABφ̃AB, (B.7)

where ΦI and φAB are related to each other as

φAB = 1√
2
(ΣI )

ABΦI , φ̃AB = 1

2
εABCDφCD (B.8)

and the scalar field satisfies the additional reality condition φ̃AB = (φAB)∗. Notice that we do not
impose a similar condition on yAB and treat (yAB)∗ as independent variables

ȳAB = (yAB)∗ �= ỹAB. (B.9)

Then, the half-BPS operator O(x,Y ) = tr[(YΦ)2] and its Hermitian conjugate [O(x,Y )]† =
tr[(YΦ)2] = O(x,Y ) take the form

O(x,Y ) = tr
[(

yABφAB
)2]

, O(x,Y ) = tr
[(

ȳABφ̃AB

)2]
, (B.10)

where φAB = φAB,aT a , φ̃AB = φ̃a
ABT a and the SU(Nc) generators are normalized as tr[T aT b] =

1
2δab (with a, b = 1, . . . ,N2

c − 1). The total transition probability involves the two-point correla-
tion function of such operators,

〈
O(x1, Y )O(x2, Y )

〉 = N2
c − 1

2

[
1

2
yA1B1 ȳ

A1B1D(x1 − x2)

]2

= N2
c − 1

2

[
(YY )D(x1 − x2)

]2
, (B.11)

where (YY ) = 1
2yA1B1 ȳ

A1B1 and D(x) denotes the propagator of a free scalar field,〈
ΦI,a(x1)Φ

J,b(x2)
〉 = δabδIJ D(x1 − x2),〈

φA1B1,a1(x1)φ̃
a2
A2B2

(x2)
〉 = 1

4
δa1a2

(
δ
A1
A2

δ
B1
B2

− δ
A1
B2

δ
B1
A2

)
D(x1 − x2). (B.12)

The explicit expression for D(x) contains a prescription,

DF (x) = − 1

4π2

1

x2 − iε
, DW(x) = − 1

4π2

1

x2 − iεx0
, (B.13)

for Feynman (time-ordered) and Wightman correlation functions, respectively.
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Fig. 6. One-loop correction to scalar–scalar and charge–charge correlations. Crosses denote detectors and the thin line
stands for the unitarity cut.

Appendix C. Scalar, charge and energy correlations at one loop

In this appendix, we compute scalar–scalar, charge–charge and energy–energy correlations to
lowest order in the coupling, using amplitude techniques.

To one-loop order, the scalar–scalar correlation 〈O(�n)O(�n′)〉 receives contributions only from
the final state |ssg〉 involving a pair of scalars and a gluon. The relevant Feynman diagrams are
shown in Figs. 6(a) and (b). For the charge–charge correlation 〈Q(�n)Q(�n′)〉 there is an additional
contribution from the state |sλλ〉 and it comes from the diagrams shown in Figs. 6(c) and (d).
To compute their contribution, we have to combine the transition amplitudes given by (3.2) with
the corresponding SU(4) weight factors and perform the integration over the phase space of the
particles in the final state.

Let us start with the scalar–scalar correlation. It is simpler to do the calculation using the
SO(6) notation. To compute the R-symmetry factor corresponding to the diagrams in Figs. 6(a)
and (b) it suffices to perform a Wick contraction between the scalar fields in the source
O(0, Y ) = tr[(YΦ)2] and the sink O(x,Y ) = tr[(YΦ)2] and the creation/annihilation operators
in the expression for the scalar flow operator (2.31), O(�n,S) ∼ SIJ a†I aJ :

2
〈
(YΦ)O(�n,S)(YΦ)

〉〈
(YΦ)O

(�n′, S′)(YΦ)
〉 ∼ 2

(
Y ISIJ Y J

)(
Y I ′

S′
I ′J ′YJ ′)

= 2(YY )2〈S〉〈S′〉, (C.1)

where the notation was introduced for 〈S〉 = (Y I SIJ Y J )/(YY ) and (YY ) = Y IY I . Here the
overall factor of 2 takes into account the symmetry of the diagrams under the exchange of the
detectors. The two diagrams in Figs. 6(a) and (b) have the same R-factor and, therefore, the
one-loop correction to the scalar–scalar correlation has the factorized form〈

O(�n)O
(�n′)〉 = σ−1

tot

∫
dPS3

(
k0

1k0
2

)−1
(YSY )

(
YS′Y

)|MO20′→s(k1)s(k2)g(k3)|2

× [
δ(2)(Ω�k1

− Ω�n)δ(2)(Ω�k2
− Ω�n′) + δ(2)(Ω�k1

− Ω�n′)δ(2)(Ω�k2
− Ω�n)

]
,

(C.2)

where the matrix element is given by (3.2) and the phase space integral is defined in (3.4).
To perform the integration over the phase space of the three particles in (C.2) it is convenient

to introduce the two-particle invariant masses sij = (ki + kj )
2 with k1 + k2 + k3 = q . In the rest

frame of the source qμ = (q0, �0) we have

s12 = q2
0 (1 − τ3), s23 = q2

0 (1 − τ1), s13 = q2
0 (1 − τ2), (C.3)

where the variables τi = 2ki,0/q0 are related to the energy of the particles and satisfy the condi-
tions 0 ≤ τi ≤ 1 and τ1 + τ2 + τ3 = 2. Then,
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∫
dPS3 δ(2)(Ω�k1

− Ω�n)δ(2)(Ω�k2
− Ω�n′)

= q2
0

64(2π)5

1∫
0

dτ1dτ2 τ1τ2 δ(1 − τ1 − τ2 + τ1τ2z), (C.4)

where z = (1 − cos θ)/2. In this way, we obtain from (C.2)

〈
O(�n)O

(�n′)〉 = g2

32π4

(YSY )(YS′Y)

q2
0 (YY )2

×
1∫

0

dτ1dτ2
τ1 + τ2 − 1

(1 − τ1)(1 − τ2)
δ(1 − τ1 − τ2 + τ1τ2z) (C.5)

and arrive at (3.21).
The analysis of the charge–charge correlations goes along the same lines. To one-loop order,

〈Q(�n)Q(�n′)〉 receives contributions from the diagrams shown in Figs. 6(a)–(d). In this case, for
computing the R-symmetry factor, it is convenient to use the SU(4) representation for the source
and sink operators, Eq. (B.10). For the diagrams in Figs. 6(a) and (b) we use the scalar part
of the charge flow operator Q(�n) ∼ QA

Ba
†
ACaCB , Eqs. (2.20) and (2.22), and perform the Wick

contractions

Q
A3
B3

〈
yA1B1φ

A1B1a
†
A3C3

〉〈
aC3B3 ȳA2B2 φ̄A2B2

〉(
Q′)A4

B4

〈
yA′

1B
′
1
φA′

1B
′
1a

†
A4C4

〉〈
aC4B4 ȳA′

2B
′
2 φ̄A′

2B
′
2

〉
∼ Q

A3
B3

(
Q′)A4

B4
yA1B1 ȳ

A2B2y1,A′
1B

′
1
ȳA′

2B
′
2δ

A1
A3

δ
B1
C3

δ
C3
A2

δ
B3
B2

δ
A′

1
A4

δ
B ′

1
C4

δ
C4
A′

2
δ
B4
B ′

2

∼ Q
A3
B3

yA3B1 ȳ
B1B3

(
Q′)A4

B4
yA4B

′
1
ȳB ′

1B4 ≡ tr(ȳQy) tr
(
ȳQ′y

)
. (C.6)

For the diagrams in Figs. 6(c) and (d) we have to use the gluino part of the charge flow operator,
Q(�n) ∼ QA

Ba
†
A,1/2a

B−1/2. Going through the calculation of the SU(4) factors, we find that for the
diagram in Fig. 6(c) it is given by (C.6) whereas for the diagram in Fig. 6(d) we have

Q
A3
B3

(
Q′)A4

B4
yA3A4 ȳ

B3B4 ≡ tr
(
ȳQyQ′) tr(ȳy) = tr

(
ȳQ′yQ

)
tr(ȳy)

= tr
(
yQȳQ′) tr(ȳy), (C.7)

where the second relation follows from antisymmetry of y and ȳ under exchange of the SU(4)

indices. There is one more diagram of the type 6(d) in which the fermion lines have opposite
orientation. Its SU(4) factor can be obtained by the substitution yAB → ˜̄yAB ≡ 1

2εABCDȳCD

and ȳAB → ỹAB ≡ 1
2εABCDyCD , and reads tr( ˜̄yQỹQ′) tr(ȳy). Then, the one-loop correction to

〈Q(�n)Q(�n′)〉 takes the following form

〈
Q(�n)Q

(�n′)〉 = 4
tr(yQȳ)

tr(yȳ)

tr(yQ′ȳ)

tr(yȳ)
(Ia+b + Ic) + tr[yQ′ȳQ+ ˜̄yQ′ỹQ]

2 tr(yȳ)
Id, (C.8)

where Ia+b denotes the contribution of the diagrams shown in Figs. 6(a) and (b)

Ia+b = 2[tr(ȳy)]2 ∫
dPS3 δ(2)(Ω�k1

− Ω�n)δ(2)(Ω�k2
− Ω�n′)|MO20′→s(k1)s(k2)g(k3)|2, (C.9)
σtot
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and similarly for Ic and Id ,

Ic = 2[tr(ȳy)]2

σtot

∫
dPS3 δ(2)(Ω�k1

− Ω�n)δ(2)(Ω�k2
− Ω�n′)|MO20′→s(k1)λ(k2)λ(k3)|2,

Id = 2[tr(ȳy)]2

σtot

∫
dPS3 δ(2)(Ω�k2

− Ω�n)δ(2)(Ω�k3
− Ω�n′)|MO20′→s(k1)λ(k2)λ(k3)|2. (C.10)

The evaluation of these integrals goes along the same lines as before: we go to the new variables
(C.3), replace the matrix elements by their explicit expressions (3.2) and integrate over the phase
space using the relation (C.4). In this way, we obtain

Ia+b = a

8π2

(z − 2) ln(1 − z) − 2z

z2(1 − z)
,

Ic = a

4π2

(1 − z) ln(1 − z) + z

z2(1 − z)
,

Id = − a

4π2

ln(1 − z)

z2
. (C.11)

The substitution of these relations into (C.8) yields (3.23).
Finally, the one-loop correction to the energy–energy correlation 〈E(n)E(n′)〉 is given by

(3.15). We replace the transition amplitudes in (3.15) by their explicit expressions (3.2) and take
into account the symmetry of the integration measure under the exchange of any pair of particles
to obtain〈

E(n)E
(
n′)〉 = 16πg2

∫
dPS3 k0

1k0
2δ(2)(Ω�k1

− Ω�n)δ(2)(Ω�k2
− Ω�n′)

4(q2)2

s12s13s23
, (C.12)

where the last factor has the same origin as the one in (3.5). Using (C.3) and (C.4), we find

〈
E(n)E

(
n′)〉 = g2q2

0

8(2π)4

1∫
0

dτ1dτ2 (τ1τ2)
2

(1 − τ1)(1 − τ2)(τ1 + τ2 − 1)
δ(1 − τ1 − τ2 + τ1τ2z)

= g2q2
0

8(2π)4

1

z(1 − z)

1∫
0

dτ1

1 − zτ1
. (C.13)

Replacing z = (1 − cos θ)/2 we arrive at (3.16).

Appendix D. R-symmetry invariant structures

In this appendix, we discuss explicit expressions for the R-symmetry factors ωR in (6.1). We
will use the same notation as in the amplitude computations, but in addition we also introduce

〈S〉 = (YSY )

(YY )
, [S] = (YSY )

(YY )
, [S] = (YSY )

(YY )
,

〈
SS′〉 = (YSS′Y)

,
〈
SS′〉 = (YS′SY )

,
(
SS′) = tr

(
SS′). (D.1)
(YY ) (YY )
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With this notation, we find the following explicit expressions for ωOO
R :

ωOO
1 = 1

6

(
SS′),

ωOO
15 = 1

6

{〈
SS′〉 − 〈

SS′〉},
ωOO

20′ = 1

6

{〈
SS′〉 + 〈

SS′〉 − 1

3

(
SS′)},

ωOO
84 = 1

6

{
[S][S′] + [S][S′] − 2〈S〉〈S′〉 − 1

2

(〈
SS′〉 + 〈

SS′〉) + 1

10

(
SS′)},

ωOO
175 = 1

6

{
[S][S′] − [S][S′] − 1

2

(〈
SS′〉 − 〈

SS′〉)},

ωOO
105 = 1

6

{
[S][S′] + [S][S′] + 4〈S〉〈S′〉 − 4

5

(〈
SS′〉 + 〈

SS′〉) + 1

10

(
SS′)}. (D.2)

We recall that in order to rewrite the basis structures YR in the correlation function notation of
Section 5.2, one has to make the replacements SIJ → Y I

2 YJ
2 , (S′)IJ → Y I

3 YJ
3 , Y → Y4, Y → Y1.

Converting the structures (D.2) into correlation function ones, we get

ωOO
R → (Y2Y3)

2YR(t1, t2), (D.3)

with t1 = (Y1Y2)(Y3Y4)/((Y1Y4)(Y2Y3)), t2 = (Y1Y3)(Y2Y4)/((Y1Y4)(Y2Y3)) and

Y1 = 1

Y15 = t1 − t2

Y20′ = t1 + t2 − 1

3

Y84 = (t1 − t2)
2 − 1

2
(t1 + t2) + 1

10

Y175 = t2
1 − t2

2 − 1

2
(t1 − t2)

Y105 = t2
1 + t2

2 + 4t1t2 − 4

5
(t1 + t2) + 1

10
. (D.4)

The polynomials YR coincide with the eigenfunctions Ynm(t1, t2) of the quadratic Casimir op-
erator of SU(4) for the irreps with Dynkin labels [n − m,2m,n − m], as listed in Appendix B
in [47].

Further, the condition (2.38) for absence of cross-talk between the two scalar detectors,
[S,S′] = 0, is translated into (Y2Y3)(Y

I
2 YJ

3 − YJ
2 Y I

3 ) = 0. This condition has two solutions, the
weaker constraint (Y2Y3) = 0 or the stronger Y2 = Y3.25 Inserting these constraints back into
(D.2), we find that the weaker one implies

(Y2Y3) = 0 → (
SS′) = 〈

SS′〉 = 〈
S′S

〉 = 0 → ωOO
1 = ωOO

15 = ωOO
20′ = 0, (D.5)

while the stronger constraint yields, in addition to (D.5),

Y2 = Y3 → [S][S′] = [S][S′] = 〈S〉〈S′〉 → ωOO
84 = ωOO

175 = 0. (D.6)

25 The variables Yi are projective, so without loss of generality we can set Y2 = Y3 instead of Y2 ∝ Y3.
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Thus, the strong version (D.6) of the condition for absence of cross-talk results in only one
surviving R-symmetry structure, ωOO

105 �= 0.
Inversely, we can ask the question which conditions on the projection variables Y and on the

detector matrices S and S′ eliminate all R-symmetry structures but ωOO
105 . Assuming that the

detector matrices satisfy the stronger form of the no-cross-talk condition, SS′ = 0 (instead of
[S,S′] = 0), from (D.2) we derive the additional conditions

[S][S′] = [S][S′] = 〈S〉〈S′〉. (D.7)

These can be solved by, e.g., the following choice of the auxiliary variables (used in Ref. [14]):

Y = (1,0,1,0, i, i), S = diag(1,−1,0,0,0,0), S ′ = diag(0,0,1,−1,0,0).

(D.8)

In a similar fashion, we can deal with basis structures in the case of charge–scalar correlations.
Indeed, we can write (up to normalization)

ωQO
15 = 4

[〈QS〉 + 〈QS〉],
ω
QO
20′ = 4

[〈QS〉 − 〈QS〉],
ωQO

175 = 4

[
〈S〉〈Q〉 − 1

8

{〈QS〉 + 〈QS〉}]. (D.9)

Here 〈QS〉 = Y IQIJ SKLYL, and we have rewritten the detector matrix QIJ = −QJI =
(Γ IJ )BAQA

B in SO(6) notation, with the help of the SO(6) gamma matrices defined in (B.4).
In the case of the charge–charge correlations, the relevant R-invariant building blocks can be

written in the form

Z1 = tr
(
QQ′), Z2 = tr(yQȳ) tr(yQ′ȳ)

[tr(yȳ)]2
,

Z3 = tr(yQQ′ȳ)

tr(yȳ)
, Z4 = tr(yQ′Qȳ)

tr(yȳ)
, Z5 = tr(yQȳQ′)

tr(yȳ)
. (D.10)

The additional structure appearing in the second term in (3.24) is not independent:

tr( ˜̄yQỹQ′)
tr(yȳ)

=Z5 − 1

2
Z1 − (Z3 +Z4)

→ 〈
Q,Q′〉 = 2Z5 − 1

2
Z1 − (Z3 +Z4). (D.11)

The R-symmetry factors ωR are constructed from them as follows (up to normalization):

ωQQ
1 = −1

5
Z1,

ωQQ
15a

= −1

5
[Z3 −Z4],

ωQQ
15s

= −1

5

[
Z1 − 4(Z3 +Z4)

]
,

ωQQ
20′ = −1

5

[
Z1 − 3(Z3 +Z4) + 6Z5

]
,

ωQQ
84 = −1 [

Z1 − 40Z2 − 5(Z3 +Z4) + 10Z5
]
. (D.12)
5
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Finally, the two correlations involving energy detectors have particularly simple R-symmetry
factors:

ωEE
1 = 1, ωEQ

15 = 8〈Q〉, ωEO
20′ = 2〈S〉. (D.13)

Appendix E. Scalar detector in Mellin space

In this appendix we compute the function K(j1, j2; z) defined in (5.24). Replacing the func-
tion f (j1, j2;x1, x2−, x3−) in (5.24) with its explicit expression (5.20) we find

K(j1, j2; z) = 1

16π5
q2((nn′)/2

)−j1−j2+1
∫

d4x1eiqx1

(−x2
1 + iεx0

1)j1+j2

×
∞∫

−∞
dx2−

(
(x1n) − x2− − iε

)j1−1
(−x2− + iε)j2−1

×
∞∫

−∞
dx3−

((
x1n

′) − x3− − iε
)j2−1

(−x3− + iε)j1−1. (E.1)

The evaluation of the x−-integrals is straightforward, making use of the Schwinger representation
for the factors involved

∞∫
−∞

dx2−
(
(x1n) − x2− − i0

)j1−1
(−x2− + i0)j2−1

= 2πij2−j1

Γ (1 − j1)Γ (1 − j2)

∞∫
0

dω1ω
−j1−j2
1 e−iω1(x1n). (E.2)

Here we left the final integration intact, which helps in evaluating the x1-integral in (E.1),

K(j1, j2; z) = q2((nn′)/2)−j1−j2+1

4π3[Γ (1 − j1)Γ (1 − j2)]2

×
∞∫

0

dω1dω2(ω1ω2)
−j1−j2Dj1+j2

(
q − ω1n − ω2n

′) (E.3)

where the notation was introduced for

Dj(q) =
∫

d4x1eiqx1

(−x2
1 + iεx0

1)j
= 2π3 (q2/4)j−2θ(q0)θ(q2)

Γ (j)Γ (j − 1)
. (E.4)

Computing the ω-integrals in (E.3) we find

K(j1, j2; z) =
(

z

1 − z

)1−j1−j2 2π

sin(π(j1 + j2))[Γ (j1 + j2)Γ (1 − j1)Γ (1 − j2)]2
. (E.5)
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