3,542 research outputs found

    Searching For Dark Matter Subhalos In the Fermi-LAT Second Source Catalog

    Full text link
    The dark matter halo of the Milky Way is expected to contain an abundance of smaller subhalos. These subhalos can be dense and produce potentially observable fluxes of gamma rays. In this paper, we search for dark matter subhalo candidates among the sources in the Fermi-LAT Second Source Catalog which are not currently identified or associated with counterparts at other wavelengths. Of the nine high-significance, high-latitude (|b|>60 degrees), non-variable, unidentified sources contained in this catalog, only one or two are compatible with the spectrum of a dark matter particle heavier than approximately 50-100 GeV. The majority of these nine sources, however, feature a spectrum that is compatible with that predicted from a lighter (~5-40 GeV) dark matter particle. This population is consistent with the number of observable subhalos predicted for a dark matter candidate in this mass range and with an annihilation cross section of a simple thermal relic (sigma v~3x10^{-26} cm^3/s). Observations in the direction of these sources at other wavelengths will be necessary to either reveal their astrophysical nature (as blazars or other active galactic nuclei, for example), or to further support the possibility that they are dark matter subhalos by failing to detect any non-gamma ray counterpart.Comment: 8 pages, 4 figure

    No Indications of Axion-Like Particles From Fermi

    Full text link
    As very high energy (~100 GeV) gamma rays travel over cosmological distances, their flux is attenuated through interactions with the extragalactic background light. Observations of distant gamma ray sources at energies between ~200 GeV and a few TeV by ground-based gamma ray telescopes such as HESS, however, suggest that the universe is more transparent to very high energy photons than had been anticipated. One possible explanation for this is the existence of axion-like-particles (ALPs) which gamma rays can efficiently oscillate into, enabling them to travel cosmological distances without attenuation. In this article, we use data from the Fermi Gamma Ray Space Telescope to calculate the spectra at 1-100 GeV of two gamma ray sources, 1ES1101-232 at redshift z=0.186 and H2356-309 at z=0.165, and use this in conjunction with the measurements of ground-based telescopes to test the ALP hypothesis. We find that the observations can be well-fit by an intrinsic power-law source spectrum with indices of -1.72 and -2.1 for 1ES1101-232 and H2356-309, respectively, and that no ALPs or other exotic physics is necessary to explain the observed degree of attenuation.Comment: 7 pages, 4 figures. v3: Matches published version, the analysis of H2356-309 is revised, no change in conclusion

    On the determination of age and mass functions of stars in young open star clusters from the analysis of their luminosity functions

    Full text link
    Based on the CCD observations of remote young open clusters NGC 2383, NGC 2384, NGC 4103, NGC 4755, NGC 7510 and Hogg 15, we constructed their observed luminosity functions (LFs). The observed LFs are corrected for field star contamination determined with the help of galactic star count model. In the case of Hogg 15 and NGC 2383 we also considered the additional contamination from neighbouring clusters NGC 4609 and NGC 2384 respectively. These corrections provided the realistic pattern of cluster LF in the vicinity of the MS turn on point and at fainter magnitudes, revealed the so called H-feature arising due to transition of the Pre-MS phase to MS, which is dependent on the cluster age. The theoretical LFs were constructed representing a cluster population model with continuous star formation for a short time scale and a power law Initial Mass Function (IMF) and these were fitted to the observed LF. As a result we are able to determine for each cluster a set of parameters, describing cluster population (the age, duration of star formation, IMF slope and percentage of field star contamination). It was found that in spite of the non-monotonic behaviour of observed LFs, cluster IMFs can be described as the power law functions with slopes similar to Salpeter's value. The present MS turn on cluster ages are several times lower than those derived from the fitting of theoretical isochrones to the turn off region of the upper Main Sequences.Comment: 17 pages, 5 figures, To appear in MNRA

    The harmonic measure of diffusion-limited aggregates including rare events

    Get PDF
    We obtain the harmonic measure of diffusion-limited aggregate (DLA) clusters using a biased random-walk sampling technique which allows us to measure probabilities of random walkers hitting sections of clusters with unprecedented accuracy; our results include probabilities as small as 10- 80. We find the multifractal D(q) spectrum including regions of small and negative q. Our algorithm allows us to obtain the harmonic measure for clusters more than an order of magnitude larger than those achieved using the method of iterative conformal maps, which is the previous best method. We find a phase transition in the singularity spectrum f(α) at α≈14 and also find a minimum q of D(q), qmin=0.9±0.05

    Techniques for High Contrast Imaging in Multi-Star Systems II: Multi-Star Wavefront Control

    Get PDF
    Direct imaging of exoplanets represents a challenge for astronomical instrumentation due to the high-contrast ratio and small angular separation between the host star and the faint planet. Multi-star systems pose additional challenges for coronagraphic instruments because of the diffraction and aberration leakage introduced by the additional stars, and as a result are not planned to be on direct imaging target lists. Multi-star wavefront control (MSWC) is a technique that uses a coronagraphic instrument's deformable mirror (DM) to create high-contrast regions in the focal plane in the presence of multiple stars. Our previous paper introduced the Super-Nyquist Wavefront Control (SNWC) technique that uses a diffraction grating to enable the DM to generate high-contrast regions beyond the nominal controllable region. These two techniques can be combined to generate high-contrast regions for multi-star systems at any angular separations. As a case study, a high-contrast wavefront control (WC) simulation that applies these techniques shows that the habitable region of the Alpha Centauri system can be imaged reaching 8 times 10(exp -9) mean contrast in 10 percent broadband light in one-sided dark holes from 1.6-5.5 lambda (wavelength) divided by D (distance)

    Speckle Control with a remapped-pupil PIAA-coronagraph

    Full text link
    The PIAA is a now well demonstrated high contrast technique that uses an intermediate remapping of the pupil for high contrast coronagraphy (apodization), before restoring it to recover classical imaging capabilities. This paper presents the first demonstration of complete speckle control loop with one such PIAA coronagraph. We show the presence of a complete set of remapping optics (the so-called PIAA and matching inverse PIAA) is transparent to the wavefront control algorithm. Simple focal plane based wavefront control algorithms can thus be employed, without the need to model remapping effects. Using the Subaru Coronagraphic Extreme AO (SCExAO) instrument built for the Subaru Telescope, we show that a complete PIAA-coronagraph is compatible with a simple implementation of a speckle nulling technique, and demonstrate the benefit of the PIAA for high contrast imaging at small angular separation.Comment: 6 figures, submitted to PAS

    The Isotropic Radio Background and Annihilating Dark Matter

    Full text link
    Observations by ARCADE-2 and other telescopes sensitive to low frequency radiation have revealed the presence of an isotropic radio background with a hard spectral index. The intensity of this observed background is found to exceed the flux predicted from astrophysical sources by a factor of approximately 5-6. In this article, we consider the possibility that annihilating dark matter particles provide the primary contribution to the observed isotropic radio background through the emission of synchrotron radiation from electron and positron annihilation products. For reasonable estimates of the magnetic fields present in clusters and galaxies, we find that dark matter could potentially account for the observed radio excess, but only if it annihilates mostly to electrons and/or muons, and only if it possesses a mass in the range of approximately 5-50 GeV. For such models, the annihilation cross section required to normalize the synchrotron signal to the observed excess is sigma v ~ (0.4-30) x 10^-26 cm^3/s, similar to the value predicted for a simple thermal relic (sigma v ~ 3 x 10^-26 cm^3/s). We find that in any scenario in which dark matter annihilations are responsible for the observed excess radio emission, a significant fraction of the isotropic gamma ray background observed by Fermi must result from dark matter as well.Comment: 11 pages, 6 figure
    corecore