6 research outputs found

    Four-fermion heavy quark operators and light current amplitudes in heavy flavor hadrons

    Get PDF
    We introduce and study the properties of the "color-straight" four-quark operators containing heavy and light quark fields. They are of the form (\bar b\Gamma_b b)(\bar q\Gamma_q q) where both brackets are color singlets. Their expectation values include the bulk of the nonfactorizable contributions to the nonleptonic decay widths of heavy hadrons. The expectation values of the color-straight operators in the heavy hadrons are related to the momentum integrals of the elastic light-quark formfactors of the respective heavy hadron. We calculate the asymptotic behavior of the light-current formfactors of heavy hadrons and show that the actual decrease is 1/(q^2)^3/2 rather than 1/q^4. The two-loop hybrid anomalous dimensions of the four-quark operators and their mixing (absent in the first loop) are obtained. Using plausible models for the elastic formfactors, we estimate the expectation values of the color-straight operators in the heavy mesons and baryons. Improved estimates will be possible in the future with new data on the radiative decays of heavy hadrons. We give the Wilson coefficients of the four-fermion operators in the 1/m_b expansion of the inclusive widths and discuss the numerical predictions. Estimates of the nonfactorizable expectation values are given.Comment: 51 pages. The case of flavor-singlet operators is added for the two-loop anomalous dimension

    Isoxazolyl-Derived 1,4-Dihydroazolo[5,1-<i>c</i>][1,2,4]Triazines: Synthesis and Photochemical Properties

    Get PDF
    New fluorescent dyes containing an assembled 1,4-dihydroazolo[5,1-c][1,2,4]triazine (DAT) core and an isoxazole ring were synthesized through a reaction between diazopyrazole or diazoimidazoles and isoxazolyl-derived enamines in mild conditions. The photophysical characteristics (maxima absorption and emission, Stokes shifts, fluorescent quantum yields, and fluorescence lifetimes) of the new fluorophores were obtained. The prepared DATs demonstrated emission maxima ranging within 433–487 nm, quantum yields within 6.1–33.3%, and a large Stokes shift. The photophysical characteristics of representative DAT examples were studied in ten different solvents. Specific (hydrogen bonds) and non-specific (dipole–dipole) intermolecular and intramolecular interactions were analyzed using XRD data and spectral experiments. Solvatochromism was analyzed using Lippert–Mataga and Dimroth–Reichardt plots, revealing the relationship between the DAT structure and the nature of solute–solvent interactions. The significant advantages of DATs are the fluorescence of their powders (QY up to 98.7%). DAT-NMe2 10 expressed bright aggregation-induced emission (AIE) behavior in DMSO and THF as the water content increased. The numerous possible variations of the structures of the heterocycles included in the DATs, as well as substituents, create excellent prospects for adjusting their photophysical and physicochemical properties

    Water/Alkali-Catalyzed Reactions of Azides with 2-Cyanothioacetamides. Eco-Friendly Synthesis of Monocyclic and Bicyclic 1,2,3-Thiadiazole-4-carbimidamides and 5-Amino-1,2,3-triazole-4-carbothioamides

    No full text
    The reactions of thioamides with azides in water were studied. It was reliably shown that the reaction of 2-cyanothioacetamides 1 with various types of azides 2 in water in the presence of alkali presents an efficient, general, one-step, atom-economic, and eco-friendly method for the synthesis of 1,2,3-thiadiazol-4-carbimidamides 5 and 1,2,3-triazole-4-carbothioamides 4. This method can be extended to the one-pot reaction of sulfonyl chlorides and 6-chloropyrimidines 2'o with sodium azide, leading to final products in higher yields, that is, avoiding the isolation of unsafe sulfonyl azides. The method was furthermore applied to the reaction of N,N'-bis-(2-cyanothiocarbonyl)pyrazine 1h with sulfonyl azides to afford bicyclic 1,2,3-thiadiazoles 8 and 1,2,3-triazoles 9 connected via a 1,1'-piperazinyl linker. 2-Cyanothioacetamides 1 were also shown to react with aromatic azides in water in the presence of alkali to afford 1-aryl-5-amino-1,2,3-triazole-4-carbothioamides 11. In contrast to aromatic azides and similarly to sulfonyl azides, 6-azidopyrimidine-2,4-diones 2o-q react with cyanothioacetamides to form N-pyrimidin-6-yl-5-dialkylamino-1,2,3-thiadiazole-4-N-l-carbimidamides 12. A mechanism was proposed to rationalize the role of water in changing the reactivity of azides toward 2-cyanothioacetamides.status: publishe

    Combined experimental and theoretical studies of regio- and stereoselectivity in reactions of β-isoxazolyl- and β-imidazolyl enamines with nitrile oxides

    No full text
    Reactions of β-azolyl enamines and nitrile oxides were studied by both experimental and theoretical methods. (E)-β-(4-Nitroimidazol-5-yl), (5-nitroimidazol-4-yl) and isoxazol-5-yl enamines smoothly react regioselectively at room temperature in dioxane solution with aryl, pyridyl, and cyclohexylhydroxamoyl chlorides without a catalyst or a base to form 4-azolylisoxazoles as the only products in good yields. The intermediate 4,5-dihydroisoxazolines were isolated as trans isomers during the reaction of (E)-β-imidazol-4-yl enamines with aryl and cyclohexylhydroxamoyl chlorides. Stepwise and concerted pathways for the reaction of β-azolyl enamines with hydroxamoyl chlorides were considered and studied at the B3LYP/Def2-TZVP level of theory combined with D3BJ dispersion correction. The reactions of benzonitrile oxide with both E- and Z-imidazolyl enamines have been shown to proceed stereoselectively to form trans- and cis-isoxazolines, respectively. The preference of E-isomers over Z-isomers, driven by the higher stability of the former, apparently controls the stereoselectivity of the investigated cycloaddition reaction with benzonitrilе oxide. Based on the reactivity of azolyl enamines towards hydroxamoyl chlorides, a novel, effective catalyst-free method was elaborated to prepare 4-azolyl-5-substituted isoxazoles that are otherwise difficult to obtain
    corecore