103 research outputs found

    Phospho-Olivine as Advanced Cathode Material for Lithium Batteries

    Get PDF
    Nano-sized and micron-sized LiFePO4 electrode materials were prepared by a sol gel and coprecipitation reactions. An improvement of the cycling and rate performances in lithium cells was observed for the carbon coated LiFePO4 materials. The coating process uses a solid/gas-phase reaction which consists of decomposing propylene gas, as carbon source, inside a reactor containing olivine LiFePO4 materials. Optimized LiFePO4 electrode cells, cycled at RT between 3.0 and 4.3 V at a C/10 rate, do not show any sign of capacity fade during the first 50 cycles. Combination of the high volumetric energy density and low cost preparation method makes the micron-sized LiFePO4 olivine an attractive safe cathode for lithium-ion batteries

    Structure and lithium transport pathways in Li<sub>2</sub>FeSiO<sub>4</sub> cathodes for lithium batteries

    Get PDF
    The importance of exploring new low-cost and safe cathodes for large-scale lithium batteries has led to increasing interest in Li(2)FeSiO(4). The structure of Li(2)FeSiO(4) undergoes significant change on cycling, from the as-prepared γ(s) form to an inverse β(II) polymorph; therefore it is important to establish the structure of the cycled material. In γ(s) half the LiO(4), FeO(4), and SiO(4) tetrahedra point in opposite directions in an ordered manner and exhibit extensive edge sharing. Transformation to the inverse β(II) polymorph on cycling involves inversion of half the SiO(4), FeO(4), and LiO(4) tetrahedra, such that they all now point in the same direction, eliminating edge sharing between cation sites and flattening the oxygen layers. As a result of the structural changes, Li(+) transport paths and corresponding Li-Li separations in the cycled structure are quite different from the as-prepared material, as revealed here by computer modeling, and involve distinct zigzag paths between both Li sites and through intervening unoccupied octahedral sites that share faces with the LiO(4) tetrahedra

    The Electrochemical Performance and Applications of Several Popular Lithium-ion Batteries for Electric Vehicles - A Review

    Get PDF
    The Lithium-ion battery is one of the most common batteries used in Electric Vehicles (EVs) due to the specific features of high energy density, power density, long life span and environment friendly. With the development of lithium-ion battery technology, different materials have been adopted in the design of the cathodes and anodes in order to gain a better performance. LiMn2O4LiMn_{2}O_{4} , LiNiMnCoO2LiNiMnCoO_{2} , LiNiCoAlO2LiNiCoAlO_{2} , LiFePO4LiFePO_{4} and Li4Ti5O12Li_{4}Ti_{5}O_{12} are five common lithium-ion batteries adopted in commercial EVs nowadays. The characteristics of these five lithium-ion batteries are reviewed and compared in the aspects of electrochemical performance and their practical applications

    Polymorphism and magnetic properties of Li2MSiO4 (M 5 Fe, Mn) cathode materials

    Get PDF
    Transition metal-based lithium orthosilicates (Li2MSiO4,M=Fe, Ni, Co, Mn) are gaining a wide interest as cathode materials for lithium-ion batteries. These materials present a very complex polymorphism that could affect their physical properties. In this work, we synthesized the Li2FeSiO4 and Li2MnSiO4 compounds by a sol-gel method at different temperatures. The samples were investigated by XRPD, TEM, 7Li MAS NMR, and magnetization measurements, in order to characterize the relationships between crystal structure and magnetic properties. High-quality 7Li MAS NMR spectra were used to determine the silicate structure, which can otherwise be hard to study due to possible mixtures of different polymorphs. The magnetization study revealed that the Neel temperature does not depend on the polymorph structure for both iron and manganese lithium orthosilicates

    SILVER(I) LUMINESCENCE IN K<SUB>1-x</SUB>Ag<SUB>x</SUB>Zn(PO<SUB>3</SUB>)<SUB>3</SUB> POLYPHOSPHATES

    No full text
    corecore