17 research outputs found

    Distinguishing Asthma Phenotypes Using Machine Learning Approaches.

    Get PDF
    Asthma is not a single disease, but an umbrella term for a number of distinct diseases, each of which are caused by a distinct underlying pathophysiological mechanism. These discrete disease entities are often labelled as asthma endotypes. The discovery of different asthma subtypes has moved from subjective approaches in which putative phenotypes are assigned by experts to data-driven ones which incorporate machine learning. This review focuses on the methodological developments of one such machine learning technique-latent class analysis-and how it has contributed to distinguishing asthma and wheezing subtypes in childhood. It also gives a clinical perspective, presenting the findings of studies from the past 5 years that used this approach. The identification of true asthma endotypes may be a crucial step towards understanding their distinct pathophysiological mechanisms, which could ultimately lead to more precise prevention strategies, identification of novel therapeutic targets and the development of effective personalized therapies

    Prevalence and early-life risk factors of school-age allergic multimorbidity: The EuroPrevall-iFAAM birth cohort.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadBackground: Coexistence of childhood asthma, eczema and allergic rhinitis is higher than can be expected by chance, suggesting a common mechanism. Data on allergic multimorbidity from a pan-European, population-based birth cohort study have been lacking. This study compares the prevalence and early-life risk factors of these diseases in European primary school children. Methods: In the prospective multicentre observational EuroPrevall-iFAAM birth cohort study, we used standardized questionnaires on sociodemographics, medical history, parental allergies and lifestyle, and environmental exposures at birth, 12 and 24 months. At primary school age, parents answered ISAAC-based questions on current asthma, rhinitis and eczema. Allergic multimorbidity was defined as the coexistence of at least two of these. Results: From 10,563 children recruited at birth in 8 study centres, we included data from 5,572 children (mean age 8.2 years; 51.8% boys). Prevalence estimates were as follows: asthma, 8.1%; allergic rhinitis, 13.3%; and eczema, 12.0%. Allergic multimorbidity was seen in 7.0% of the whole cohort, ranging from 1.2% (Athens, Greece) to 10.9% (Madrid, Spain). Risk factors for allergic multimorbidity, identified with AICc, included family-allergy-score, odds ratio (OR) 1.50 (95% CI 1.32-1.70) per standard deviation; early-life allergy symptoms, OR 2.72 (2.34-3.16) for each symptom; and caesarean birth, OR 1.35 (1.04-1.76). Female gender, OR 0.72 (0.58-0.90); older siblings, OR 0.79 (0.63-0.99); and day care, OR 0.81 (0.63-1.06) were protective factors. Conclusion: Allergic multimorbidity should be regarded as an important chronic childhood disease in Europe. Some of the associated early-life factors are modifiable and may be considered for prevention strategies. Keywords: allergic multimorbidity; allergic rhinitis; asthma; children; eczema.European Commission under the 6th Framework Programme within the collaborative research initiative 'EuroPrevall' European Commission under 7th Framework Programme (FP7-KBBE-2012-6) within the collaborative project 'iFAAM' Icelandic birth cohort centre from Landspitali University Hospital Iceland Science Fund GlaxoSmithKline UK birth cohort centre from the UK Food Standards Agenc

    Trajectories of childhood immune development and respiratory health relevant to asthma and allergy

    Get PDF
    Events in early life contribute to subsequent risk of asthma; however, the causes and trajectories of childhood wheeze are heterogeneous and do not always result in asthma. Similarly, not all atopic individuals develop wheeze, and vice versa. The reasons for these differences are unclear. Using unsupervised model-based cluster analysis, we identified latent clusters within a prospective birth cohort with deep immunological and respiratory phenotyping. We characterised each cluster in terms of immunological profile and disease risk, and replicated our results in external cohorts from the UK and USA. We discovered three distinct trajectories, one of which is a high-risk ‘atopic’ cluster with increased propensity for allergic diseases throughout childhood. Atopy contributes varyingly to later wheeze depending on cluster membership. Our findings demonstrate the utility of unsupervised analysis in elucidating heterogeneity in asthma pathogenesis and provide a foundation for improving management and prevention of childhood asthma

    Non-parametric mixture models identify trajectories of childhood immune development relevant to asthma and allergy

    No full text
    Events in early life contribute to subsequent risk of asthma; however, the causes and trajectories of childhood wheeze are heterogeneous and do not always result in asthma. Similarly, not all atopic individuals develop wheeze, and vice versa. The reasons for these differences are unclear. Using unsupervised model-based cluster analysis, we identified latent clusters within a prospective birth cohort with deep immunological and respiratory phenotyping. We characterised each cluster in terms of immunological profile and disease risk, and replicated our results in external cohorts from the UK and USA. We discovered three distinct trajectories, one of which is a high-risk "atopic" cluster with increased propensity for allergic diseases throughout childhood. Atopy contributes varyingly to later wheeze depending on cluster membership. Our findings demonstrate the utility of unsupervised analysis in elucidating heterogeneity in asthma pathogenesis and provide a foundation for improving management and prevention of childhood asthma

    AI for social good: unlocking the opportunity for positive impact

    No full text
    Advances in machine learning (ML) and artificial intelligence (AI) present an opportunity to build better tools and solutions to help address some of the world’s most pressing challenges, and deliver positive social impact in accordance with the priorities outlined in the United Nations’ 17 Sustainable Development Goals (SDGs). The AI for Social Good (AI4SG) movement aims to establish interdisciplinary partnerships centred around AI applications towards SDGs. We provide a set of guidelines for establishing successful long-term collaborations between AI researchers and application-domain experts, relate them to existing AI4SG projects and identify key opportunities for future AI applications targeted towards social good

    Identification of Asthma Subtypes Using Clustering Methodologies

    No full text
    Asthma is a heterogeneous disease comprising a number of subtypes which may be caused by different pathophysiologic mechanisms (sometimes referred to as endotypes) but may share similar observed characteristics (phenotypes). The use of unsupervised clustering in adult and paediatric populations has identified subtypes of asthma based on observable characteristics such as symptoms, lung function, atopy, eosinophilia, obesity, and age of onset. Here we describe different clustering methods and demonstrate their contributions to our understanding of the spectrum of asthma syndrome. Precise identification of asthma subtypes and their pathophysiological mechanisms may lead to stratification of patients, thus enabling more precise therapeutic and prevention approaches
    corecore