11 research outputs found

    Time between symptom onset, hospitalisation and recovery or death : statistical analysis of Belgian COVID-19 patients

    Get PDF
    There are different patterns in the COVID-19 outbreak in the general population and amongst nursing home patients. We investigate the time from symptom onset to diagnosis and hospitalization or the length of stay (LoS) in the hospital, and whether there are differences in the population. Sciensano collected information on 14,618 hospitalized patients with COVID-19 admissions from 114 Belgian hospitals between 14 March and 12 June 2020. The distributions of different event times for different patient groups are estimated accounting for interval censoring and right truncation of the time intervals. The time between symptom onset and hospitalization or diagnosis are similar, with median length between symptom onset and hospitalization ranging between 3 and 10.4 days, depending on the age of the patient (longest delay in age group 20-60 years) and whether or not the patient lives in a nursing home (additional 2 days for patients from nursing home). The median LoS in hospital varies between 3 and 10.4 days, with the LoS increasing with age. The hospital LoS for patients that recover is shorter for patients living in a nursing home, but the time to death is longer for these patients. Over the course of the first wave, the LoS has decreased

    Time between symptom onset, hospitalisation and recovery or death : statistical analysis of Belgian COVID-19 patients

    Get PDF
    There are different patterns in the COVID-19 outbreak in the general population and amongst nursing home patients. We investigate the time from symptom onset to diagnosis and hospitalization or the length of stay (LoS) in the hospital, and whether there are differences in the population. Sciensano collected information on 14,618 hospitalized patients with COVID-19 admissions from 114 Belgian hospitals between 14 March and 12 June 2020. The distributions of different event times for different patient groups are estimated accounting for interval censoring and right truncation of the time intervals. The time between symptom onset and hospitalization or diagnosis are similar, with median length between symptom onset and hospitalization ranging between 3 and 10.4 days, depending on the age of the patient (longest delay in age group 20-60 years) and whether or not the patient lives in a nursing home (additional 2 days for patients from nursing home). The median LoS in hospital varies between 3 and 10.4 days, with the LoS increasing with age. The hospital LoS for patients that recover is shorter for patients living in a nursing home, but the time to death is longer for these patients. Over the course of the first wave, the LoS has&nbsp;decreased.</p

    Mobility and the spatial spread of SARS-CoV-2 in Belgium

    Full text link
    In this study, we analyse and mutually compare time series of COVID-19-related data and mobility data across Belgium's 43 arrondissements (NUTS 3). In particular, we answer three questions. First, we confirm that overall mobility did in fact change over the consecutive stages of the pandemic. This is expressed as a significant change in the average amount of time spent outside one's home arrondissement, investigated over five distinct periods. Additionally, we define an inter-arrondissement "connectivity index" (CI) that proves to be both insightful and useful for further analysis. Second, we analyse spatio-temporal COVID-19-related incidence and hospitalisation data, confirming that some arrondissements are ahead of others and morphologically dissimilar to others, in terms of epidemiological progression. The tools used to quantify this are time-lagged cross-correlation (TLCC) and dynamic time warping (DTW), respectively. Third, we demonstrate in particular that an arrondissement's connectivity index to one of the three identified first-outbreak arrondissements is correlated to a significant local excess mortality some five to six weeks after the first outbreak. More generally, we couple answers to the first and second question in order to demonstrate an overall correlation between CI values on the one hand, and TLCC and DTW values on the other. This confirms that, despite the fact that Belgium is a small and highly connected country, one can still distinguish heterogeneity in the spatiotemporal spread of SARS-CoV-2, and link this heterogeneity to the physical movement of people. This conclusion supports the need for mobility analysis and/or control during a pandemic, and by extension motivates the development of a spatially explicit epidemiological model for countries like Belgium.Comment: Main text: 18 pages, 12 figures. Appendices: 5 pages, 4 figures. References: 4

    Severity of infection with the SARS-CoV-2 B.1.1.7 lineage among hospitalized COVID-19 patients in Belgium

    No full text
    INTRODUCTION: The pathogenesis of COVID-19 depends on the interplay between host characteristics, viral characteristics and contextual factors. Here, we compare COVID-19 disease severity between hospitalized patients in Belgium infected with the SARS-CoV-2 variant B.1.1.7 and those infected with previously circulating&nbsp;strains. METHODS: The study is conducted within a causal framework to study the severity of SARS-CoV-2 variants by merging surveillance registries in Belgium. Infection with SARS-CoV-2 B.1.1.7 (‘exposed’) was compared to infection with previously circulating strains (‘unexposed’) in terms of the manifestation of severe COVID-19, intensive care unit (ICU) admission, or in-hospital mortality. The exposed and unexposed group were matched based on the hospital and the mean ICU occupancy rate during the patient&#8217;s hospital stay. Other variables identified as confounders in a Directed Acyclic Graph (DAG) were adjusted for using regression analysis. Sensitivity analyses were performed to assess the influence of selection bias, vaccination rollout, and unmeasured&nbsp;confounding. RESULTS: We observed no difference between the exposed and unexposed group in severe COVID-19 disease or in-hospital mortality (RR = 1.15, 95% CI [0.93-1.38] and RR = 0.92, 95% CI [0.62-1.23], respectively). The estimated standardized risk to be admitted in ICU was significantly higher (RR = 1.36, 95% CI [1.03-1.68]) when infected with the B.1.1.7 variant. An age-stratified analysis showed that among the younger age group (≤65 years), the SARS-CoV-2 variant B.1.1.7 was significantly associated with both severe COVID-19 progression and ICU&nbsp;admission. CONCLUSION: This matched observational cohort study did not find an overall increased risk of severe COVID-19 or death associated with B.1.1.7 infection among patients already hospitalized. There was a significant increased risk to be transferred to ICU when infected with the B.1.1.7 variant, especially among the younger age group. However, potential selection biases advocate for more systematic sequencing of samples from hospitalized COVID-19&nbsp;patients.</p

    Association between COVID-19 Primary Vaccination and Severe Disease Caused by SARS-CoV-2 Delta Variant among Hospitalized Patients: A Belgian Retrospective Cohort Study

    No full text
    We aimed to investigate vaccine effectiveness against progression to severe COVID-19 (acute respiratory distress syndrome (ARDS), intensive care unit (ICU) admission and/or death) and in-hospital death in a cohort of hospitalized COVID-19 patients. Mixed effects logistic regression analyses were performed to estimate the association between receiving a primary COVID-19 vaccination schedule and severe outcomes after adjusting for patient, hospital, and vaccination characteristics. Additionally, the effects of the vaccine brands including mRNA vaccines mRNA-1273 and BNT162b2, and adenovirus-vector vaccines ChAdOx1 (AZ) and Ad26.COV2.S (J&J) were compared to each other. This retrospective, multicenter cohort study included 2493 COVID-19 patients hospitalized across 73 acute care hospitals in Belgium during the time period 15 August 2021–14 November 2021 when the Delta variant (B1.617.2) was predominant. Hospitalized COVID-19 patients that received a primary vaccination schedule had lower odds of progressing to severe disease (OR (95% CI); 0.48 (0.38; 0.60)) and in-hospital death (OR (95% CI); 0.49 (0.36; 0.65)) than unvaccinated patients. Among the vaccinated patients older than 75 years, mRNA vaccines and AZ seemed to confer similar protection, while one dose of J&J showed lower protection in this age category. In conclusion, a primary vaccination schedule protects against worsening of COVID-19 to severe outcomes among hospitalized patients

    Homologous and Heterologous Prime-Boost Vaccination: Impact on Clinical Severity of SARS-CoV-2 Omicron Infection among Hospitalized COVID-19 Patients in Belgium

    No full text
    We investigated effectiveness of (1) mRNA booster vaccination versus primary vaccination only and (2) heterologous (viral vector&ndash;mRNA) versus homologous (mRNA&ndash;mRNA) prime-boost vaccination against severe outcomes of BA.1, BA.2, BA.4 or BA.5 Omicron infection (confirmed by whole genome sequencing) among hospitalized COVID-19 patients using observational data from national COVID-19 registries. In addition, it was investigated whether the difference between the heterologous and homologous prime-boost vaccination was homogenous across Omicron sub-lineages. Regression standardization (parametric g-formula) was used to estimate counterfactual risks for severe COVID-19 (combination of severity indicators), intensive care unit (ICU) admission, and in-hospital mortality under exposure to different vaccination schedules. The estimated risk for severe COVID-19 and in-hospital mortality was significantly lower with an mRNA booster vaccination as compared to only a primary vaccination schedule (RR = 0.59 [0.33; 0.85] and RR = 0.47 [0.15; 0.79], respectively). No significance difference was observed in the estimated risk for severe COVID-19, ICU admission and in-hospital mortality with a heterologous compared to a homologous prime-boost vaccination schedule, and this difference was not significantly modified by the Omicron sub-lineage. Our results support evidence that mRNA booster vaccination reduced the risk of severe COVID-19 disease during the Omicron-predominant period

    Association between COVID-19 Primary Vaccination and Severe Disease Caused by SARS-CoV-2 Delta Variant among Hospitalized Patients: A Belgian Retrospective Cohort Study

    No full text
    We aimed to investigate vaccine effectiveness against progression to severe COVID-19 (acute respiratory distress syndrome (ARDS), intensive care unit (ICU) admission and/or death) and in-hospital death in a cohort of hospitalized COVID-19 patients. Mixed effects logistic regression analyses were performed to estimate the association between receiving a primary COVID-19 vaccination schedule and severe outcomes after adjusting for patient, hospital, and vaccination characteristics. Additionally, the effects of the vaccine brands including mRNA vaccines mRNA-1273 and BNT162b2, and adenovirus-vector vaccines ChAdOx1 (AZ) and Ad26.COV2.S (J&J) were compared to each other. This retrospective, multicenter cohort study included 2493 COVID-19 patients hospitalized across 73 acute care hospitals in Belgium during the time period 15 August 2021–14 November 2021 when the Delta variant (B1.617.2) was predominant. Hospitalized COVID-19 patients that received a primary vaccination schedule had lower odds of progressing to severe disease (OR (95% CI); 0.48 (0.38; 0.60)) and in-hospital death (OR (95% CI); 0.49 (0.36; 0.65)) than unvaccinated patients. Among the vaccinated patients older than 75 years, mRNA vaccines and AZ seemed to confer similar protection, while one dose of J&J showed lower protection in this age category. In conclusion, a primary vaccination schedule protects against worsening of COVID-19 to severe outcomes among hospitalized patients

    Low-dose hydroxychloroquine therapy and mortality in hospitalised patients with COVID-19: a nationwide observational study of 8075 participants.

    No full text
    Hydroxychloroquine (HCQ) has been largely used and investigated as therapy for COVID-19 across various settings at a total dose usually ranging from 2400 mg to 9600 mg. In Belgium, off-label use of low-dose HCQ (total 2400 mg over 5 days) was recommended for hospitalised patients with COVID-19. We conducted a retrospective analysis of in-hospital mortality in the Belgian national COVID-19 hospital surveillance data. Patients treated either with HCQ monotherapy and supportive care (HCQ group) were compared with patients treated with supportive care only (no-HCQ group) using a competing risks proportional hazards regression with discharge alive as competing risk, adjusted for demographic and clinical features with robust standard errors. Of 8075 patients with complete discharge data on 24 May 2020 and diagnosed before 1 May 2020, 4542 received HCQ in monotherapy and 3533 were in the no-HCQ group. Death was reported in 804/4542 (17.7%) and 957/3533 (27.1%), respectively. In the multivariable analysis, mortality was lower in the HCQ group compared with the no-HCQ group [adjusted hazard ratio (aHR) = 0.684, 95% confidence interval (CI) 0.617-0.758]. Compared with the no-HCQ group, mortality in the HCQ group was reduced both in patients diagnosed ≤5 days (n = 3975) and >5 days (n = 3487) after symptom onset [aHR = 0.701 (95% CI 0.617-0.796) and aHR = 0.647 (95% CI 0.525-0.797), respectively]. Compared with supportive care only, low-dose HCQ monotherapy was independently associated with lower mortality in hospitalised patients with COVID-19 diagnosed and treated early or later after symptom onset

    Low-dose hydroxychloroquine therapy and mortality in hospitalised patients with COVID-19: a nationwide observational study of 8075 participants.

    No full text
    Hydroxychloroquine (HCQ) has been largely used and investigated as therapy for COVID-19 across various settings at a total dose usually ranging from 2400 mg to 9600 mg. In Belgium, off-label use of low-dose HCQ (total 2400 mg over 5 days) was recommended for hospitalised patients with COVID-19. We conducted a retrospective analysis of in-hospital mortality in the Belgian national COVID-19 hospital surveillance data. Patients treated either with HCQ monotherapy and supportive care (HCQ group) were compared with patients treated with supportive care only (no-HCQ group) using a competing risks proportional hazards regression with discharge alive as competing risk, adjusted for demographic and clinical features with robust standard errors. Of 8075 patients with complete discharge data on 24 May 2020 and diagnosed before 1 May 2020, 4542 received HCQ in monotherapy and 3533 were in the no-HCQ group. Death was reported in 804/4542 (17.7%) and 957/3533 (27.1%), respectively. In the multivariable analysis, mortality was lower in the HCQ group compared with the no-HCQ group [adjusted hazard ratio (aHR) = 0.684, 95% confidence interval (CI) 0.617-0.758]. Compared with the no-HCQ group, mortality in the HCQ group was reduced both in patients diagnosed ≤5 days (n = 3975) and >5 days (n = 3487) after symptom onset [aHR = 0.701 (95% CI 0.617-0.796) and aHR = 0.647 (95% CI 0.525-0.797), respectively]. Compared with supportive care only, low-dose HCQ monotherapy was independently associated with lower mortality in hospitalised patients with COVID-19 diagnosed and treated early or later after symptom onset.info:eu-repo/semantics/publishe

    Impact of solid cancer on in-hospital mortality overall and among different subgroups of patients with COVID-19: a nationwide, population-based analysis.

    Get PDF
    Cancer seems to have an independent adverse prognostic effect on COVID-19-related mortality, but uncertainty exists regarding its effect across different patient subgroups. We report a population-based analysis of patients hospitalised with COVID-19 with prior or current solid cancer versus those without cancer. We analysed data of adult patients registered until 24 May 2020 in the Belgian nationwide database of Sciensano. The primary objective was in-hospital mortality within 30 days of COVID-19 diagnosis among patients with solid cancer versus patients without cancer. Severe event occurrence, a composite of intensive care unit admission, invasive ventilation and/or death, was a secondary objective. These endpoints were analysed across different patient subgroups. Multivariable logistic regression models were used to analyse the association between cancer and clinical characteristics (baseline analysis) and the effect of cancer on in-hospital mortality and on severe event occurrence, adjusting for clinical characteristics (in-hospital analysis). A total of 13 594 patients (of whom 1187 with solid cancer (8.7%)) were evaluable for the baseline analysis and 10 486 (892 with solid cancer (8.5%)) for the in-hospital analysis. Patients with cancer were older and presented with less symptoms/signs and lung imaging alterations. The 30-day in-hospital mortality was higher in patients with solid cancer compared with patients without cancer (31.7% vs 20.0%, respectively; adjusted OR (aOR) 1.34; 95% CI 1.13 to 1.58). The aOR was 3.84 (95% CI 1.94 to 7.59) among younger patients (<60 years) and 2.27 (95% CI 1.41 to 3.64) among patients without other comorbidities. Severe event occurrence was similar in both groups (36.7% vs 28.8%; aOR 1.10; 95% CI 0.95 to 1.29). This population-based analysis demonstrates that solid cancer is an independent adverse prognostic factor for in-hospital mortality among patients with COVID-19. This adverse effect was more pronounced among younger patients and those without other comorbidities. Patients with solid cancer should be prioritised in vaccination campaigns and in tailored containment measurements
    corecore