62 research outputs found

    Impaired Functions of Peripheral Blood Monocyte Subpopulations in Aged Humans

    Get PDF
    Aging is associated with increased susceptibility to microbial infections, and monocytes play an important role in microbial defense. In this study, we have identified and compared four subpopulations of monocytes (CD14++(high)CD16−, CD14+(low)CD16−, CD14++(high)CD16+, and CD14+(low)CD16+) in the peripheral blood of young and aged subjects with regard to their numbers, cytokine production, TLR expression, and phosphorylation of ERK1/2 in response to pam3Cys a TLR-1/2 ligand. Proportions and numbers of CD14++(high)CD16+ and CD14+(low)CD16+ monocytes were significantly increased, whereas proportions of CD14+(low)CD16− monocytes were decreased in aged subjects as compared to young subjects. In aged subjects, IL-6 production by all four subsets of monocytes was significantly decreased, whereas TNF-α production was decreased in monocyte subsets, except the CD14+(low)CD16− subset. A significantly reduced expression of TLR1 was observed in CD14++(high)CD16+ and CD14+(low)CD16+ monocyte subsets in aged subjects. Furthermore, following pam3Cys stimulation, ERK1/2 phosphorylation was significantly lower in CD14+(low)CD16+, CD14++(high)CD16+, and CD14+(low)CD16− subsets of monocytes from aged subjects. This is the first study of four subpopulations of monocytes in aging, which demonstrates that their functions are differentially impaired with regard to the production of cytokines, expression of TLR, and signaling via the ERK–MAPK pathway. Finally, changes in the number of monocyte subsets, and impairment of TLR1 expression, TNF-α production, and EK1/2 phosphorylation was more consistent in CD16+ monocyte subsets regardless of expression of CD14high or CD14+low, therefore highlighting the significance of further subdivision of monocytes into four subpopulations

    Susceptibility and Response of Human Blood Monocyte Subsets to Primary Dengue Virus Infection

    Get PDF
    Human blood monocytes play a central role in dengue infections and form the majority of virus infected cells in the blood. Human blood monocytes are heterogeneous and divided into CD16− and CD16+ subsets. Monocyte subsets play distinct roles during disease, but it is not currently known if monocyte subsets differentially contribute to dengue protection and pathogenesis. Here, we compared the susceptibility and response of the human CD16− and CD16+ blood monocyte subsets to primary dengue virus in vitro. We found that both monocyte subsets were equally susceptible to dengue virus (DENV2 NGC), and capable of supporting the initial production of new infective virus particles. Both monocyte subsets produced anti-viral factors, including IFN-α, CXCL10 and TRAIL. However, CD16+ monocytes were the major producers of inflammatory cytokines and chemokines in response to dengue virus, including IL-1β, TNF-α, IL-6, CCL2, 3 and 4. The susceptibility of both monocyte subsets to infection was increased after IL-4 treatment, but this increase was more profound for the CD16+ monocyte subset, particularly at early time points after virus exposure. These findings reveal the differential role that monocyte subsets might play during dengue disease

    Ontogenetic De Novo Copy Number Variations (CNVs) as a Source of Genetic Individuality: Studies on Two Families with MZD Twins for Schizophrenia

    Get PDF
    Genetic individuality is the foundation of personalized medicine, yet its determinants are currently poorly understood. One issue is the difference between monozygotic twins that are assumed identical and have been extensively used in genetic studies for decades [1]. Here, we report genome-wide alterations in two nuclear families each with a pair of monozygotic twins discordant for schizophrenia evaluated by the Affymetrix 6.0 human SNP array. The data analysis includes characterization of copy number variations (CNVs) and single nucleotide polymorphism (SNPs). The results have identified genomic differences between twin pairs and a set of new provisional schizophrenia genes. Samples were found to have between 35 and 65 CNVs per individual. The majority of CNVs (∼80%) represented gains. In addition, ∼10% of the CNVs were de novo (not present in parents), of these, 30% arose during parental meiosis and 70% arose during developmental mitosis. We also observed SNPs in the twins that were absent from both parents. These constituted 0.12% of all SNPs seen in the twins. In 65% of cases these SNPs arose during meiosis compared to 35% during mitosis. The developmental mitotic origin of most CNVs that may lead to MZ twin discordance may also cause tissue differences within individuals during a single pregnancy and generate a high frequency of mosaics in the population. The results argue for enduring genome-wide changes during cellular transmission, often ignored in most genetic analyses

    Beryllium increases the CD14<sup>dim</sup>CD16+ subset in the lung of chronic beryllium disease

    Get PDF
    CD14dimCD16+ and CD14brightCD16+ cells, which compose a minor population of monocytes in human peripheral blood mononuclear cells (PBMC), have been implicated in several inflammatory diseases. The aim of this study was to investigate whether this phenotype was present as a subset of lung infiltrative alveolar macrophages (AMs) in the granulomatous lung disease, chronic beryllium disease (CBD). The monocytes subsets was determined from PBMC cells and bronchoalveolar lavage (BAL) cells from CBD, beryllium sensitized Non-smoker (BeS-NS) and healthy subjects (HS) using flow cytometry. The impact of smoking on the AMs cell phenotype was determined by using BAL cells from BeS smokers (BeS-S). In comparison with the other monocyte subpopulations, CD14dimCD16+ cells were at decreased frequency in PBMCs of both BeS-NS and CBD and showed higher HLA-DR expression, compared to HS. The AMs from CBD and BeS-NS demonstrated a CD14dimCD16+phenotype, while CD14brightCD16+ cells were found at increased frequency in AMs of BeS, compared to HS. Fresh AMs from BeS-NS and CBD demonstrated significantly greater CD16, CD40, CD86 and HLA-DR than HS and BeS-S. The expression of CD16 on AMs from both CBD and BeS-NS was downregulated significantly after 10μM BeSO4 stimulation. The phagocytic activity of AMs decreased after 10μM BeSO4 treatment in both BeS-NS and CBD, although was altered or reduced in HS and BeS-S. These results suggest that Be increases the CD14dimCD16+ subsets in the lung of CBD subjects. We speculate that Be-stimulates the compartmentalization of a more mature CD16+ macrophage phenotype and that in turn these macrophages are a source of Th1 cytokines and chemokines that perpetuate the Be immune response in CBD. The protective effect of cigarette smoking in BeS-S may be due to the low expression of co-stimulatory markers on AMs from smokers as well as the decreased phagocytic function

    The CD14+/lowCD16+ monocyte subset is more susceptible to spontaneous and oxidant-induced apoptosis than the CD14+CD16− subset

    Get PDF
    Human monocytes can be classified into two subsets with distinctive characteristics. In this study, we report a difference in apoptotic potential between these two subsets with CD14+/lowCD16+ monocytes being more susceptible than CD14+CD16− monocytes to undergo spontaneous apoptosis and apoptosis induced by reactive oxygen species (ROS). By global transcriptomic and proteomic approaches, we observed that CD14+/lowCD16+ monocytes expressed higher levels of pro-apoptotic genes and proteins such as TNFα, caspase 3, Bax and cytochrome c and showed more caspases 3 and 7 activities. They also exhibited greater aerobic respiration resulting in a higher production of ROS from the mitochondria. CD14+CD16− monocytes, in contrast, showed higher expression of glutathione (GSH)-metabolizing genes such as GSH peroxidase and microsomal GSH S-transferase and were more resistant to oxidative stress than CD14+/lowCD16+ monocytes. The apoptosis of CD14+/lowCD16+ monocytes was ROS dependent as reducing ROS levels significantly reduced cell death. This is the first report of a differential apoptotic propensity of human monocyte subsets, and gaining a better understanding of this process may help to provide a better understanding of the roles of these subsets during homeostasis and under pathological conditions, particularly in situations in which high levels of oxidants are present

    Regulation of LRRK2 Expression Points to a Functional Role in Human Monocyte Maturation

    Get PDF
    Genetic variants of Leucine-Rich Repeat Kinase 2 (LRRK2) are associated with a significantly enhanced risk for Parkinson disease, the second most common human neurodegenerative disorder. Despite major efforts, our understanding of LRRK2 biological function and regulation remains rudimentary. In the present study we analyze LRRK2 mRNA and protein expression in sub-populations of human peripheral blood mononuclear cells (PBMCs). LRRK2 mRNA and protein was found in circulating CD19+ B cells and in CD14+ monocytes, whereas CD4+ and CD8+ T cells were devoid of LRRK2 mRNA. Within CD14+ cells the CD14+CD16+ sub-population of monocytes exhibited high levels of LRRK2 protein, in contrast to CD14+CD16- cells. However both populations expressed LRRK2 mRNA. As CD14+CD16+ cells represent a more mature subset of monocytes, we monitored LRRK2 expression after in vitro treatment with various stress factors known to induce monocyte activation. We found that IFN-γ in particular robustly increased LRRK2 mRNA and protein levels in monocytes concomitant with a shift of CD14+CD16− cells towards CD14+CD16+cells. Interestingly, the recently described LRRK2 inhibitor IN-1 attenuated this shift towards CD14+CD16+ after IFN-γ stimulation. Based on these findings we speculate that LRRK2 might have a role in monocyte maturation. Our results provide further evidence for the emerging role of LRRK2 in immune cells and regulation at the transcriptional and translational level. Our data might also reflect an involvement of peripheral and brain immune cells in the disease course of PD, in line with increasing awareness of the role of the immune system in PD

    Left and right ventricle assessment with Cardiac CT: validation study vs. Cardiac MR

    Get PDF
    Objectives To compare Magnetic Resonance (MR) and Computed Tomography (CT) for the assessment of left (LV) and right (RV) ventricular functional parameters. Methods Seventy nine patients underwent both Cardiac CT and Cardiac MR. Images were acquired using short axis (SAX) reconstructions for CT and 2D cine b-SSFP (balanced- steady state free precession) SAX sequence for MR, and evaluated using dedicated software. Results CT and MR images showed good agreement: LV EF (Ejection Fraction) (52±14% for CT vs. 52±14% for MR; r0 0.73; p>0.05); RV EF (47±12% for CT vs. 47±12% for MR; r00.74; p>0.05); LV EDV (End Diastolic Volume) (74± 21 ml/m 2 for CT vs. 76±25 ml/m 2 for MR; r00.59; p>0.05); RV EDV (84±25 ml/m 2 for CT vs. 80±23 ml/m 2 for MR; r0 0.58; p>0.05); LV ESV (End Systolic Volume)(37±19 ml/m 2 for CT vs. 38±23 ml/m 2 for MR; r00.76; p>0.05); RV ESV (46±21 ml/m 2 for CT vs. 43±18 ml/m 2 for MR; r00.70; p>0.05). Intra- and inter-observer variability were good, and the performance of CT was maintained for different EF subgroups. Conclusions Cardiac CT provides accurate and reproducible LVand RV volume parameters compared with MR, and can be considered as a reliable alternative for patients who are not suitable to undergo MR. Key Points • Cardiac-CT is able to provide Left and Right Ventricular function. • Cardiac-CT is accurate as MR for LV and RV volume assessment. • Cardiac-CT can provide accurate evaluation of coronary arteries and LV and RV function

    Increased Expression of Toll-Like Receptors by Monocytes and Natural Killer Cells in ANCA-Associated Vasculitis

    Get PDF
    INTRODUCTION: Toll-like receptors (TLRs) are a family of receptors that sense pathogen associated patterns such as bacterial cell wall proteins. Bacterial infections are associated with anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV). Here, we assessed the expression of TLRs 2, 4, and 9 by peripheral blood leukocytes from patients with AAV, and investigated TLR mediated responses ex vivo. METHODS: Expression of TLRs was determined in 38 AAV patients (32 remission, 6 active disease), and 20 healthy controls (HC). Membrane expression of TLRs 2, 4, and 9, and intracellular expression of TLR9 by B lymphocytes, T lymphocytes, NK cells, monocytes and granulocytes was assessed using 9-color flowcytometry. Whole blood from 13 patients and 7 HC was stimulated ex vivo with TLR 2, 4 and 9 ligands and production of cytokines was analyzed. RESULTS: In patients, we observed increased proportions of TLR expressing NK cells. Furthermore, patient monocytes expressed higher levels of TLR2 compared to HC, and in a subset of patients an increased proportion of TLR4(+) monocytes was observed. Monocytes from nasal carriers of Staphylococcus aureus expressed increased levels of intracellular TLR9. Membrane expression of TLRs by B lymphocytes, T lymphocytes, and granulocytes was comparable between AAV patients and HC. Patients with active disease did not show differential TLR expression compared to patients in remission. Ex vivo responses to TLR ligands did not differ significantly between patients and HC. CONCLUSIONS: In AAV, monocytes and NK cells display increased TLR expression. Increased TLR expression by these leukocytes, probably resulting from increased activation, could play a role in disease (re)activation

    Targeting of Natural Killer Cells by Rabbit Antithymocyte Globulin and Campath-1H: Similar Effects Independent of Specificity

    Get PDF
    T cell depleting strategies are an integral part of immunosuppressive regimens widely used in the hematological and solid organ transplant setting. Although it is known to induce lymphocytopenia, little is known about the effects of the polyclonal rabbit antithymocyte globulin (rATG) or the monoclonal anti-CD52 antibody alemtuzumab on Natural Killer (NK) cells in detail. Here, we demonstrate that induction therapy with rATG following kidney/pancreas transplantation results in a rapid depletion of NK cells. Treatment of NK cells with rATG and alemtuzumab in vitro leads to impairment of cytotoxicity and induction of apoptosis even at a 10-fold lower concentration (0.1 µg/ml) compared with T and B cells. By generating Fc-parts of rATG and alemtuzumab we illustrate that their ligation to FcγRIII (CD16) is sufficient for the significant induction of degranulation, apoptosis and inflammatory cytokine release (FasL, TNFα and IFNγ) exclusively in CD3−CD56dim NK cells whereas application of rATG and alemtuzumab F(ab) fragments abolishes these effects. These findings are of general importance as our data suggest that NK cells are also mediators of the clinically relevant cytokine release syndrome and that their targeting by therapeutic antibodies should be considered as they are functionally relevant for the effective clearance of opportunistic viral infections and anti-tumor activity posttransplantation
    corecore