30 research outputs found

    Helicobacter suis affects the health and function of porcine gastric parietal cells

    Get PDF
    The stomach of pigs at slaughter age is often colonized by Helicobacter (H.) suis, which is also the most prevalent gastric non-H. pylori Helicobacter (NHPH) species in humans. It is associated with chronic gastritis, gastric ulceration and other gastric pathological changes in both hosts. Parietal cells are highly specialized, terminally differentiated epithelial cells responsible for gastric acid secretion and regulation. Dysfunction of these cells is closely associated with gastric pathology and disease. Here we describe a method for isolation and culture of viable and responsive parietal cells from slaughterhouse pigs. In addition, we investigated the interactions between H. suis and gastric parietal cells both in H. suis-infected six-month-old slaughter pigs, as well as in our in vitro parietal cell model. A close interaction of H. suis and parietal cells was observed in the fundic region of stomachs from H. suis positive pigs. The bacterium was shown to be able to directly interfere with cultured porcine parietal cells, causing a significant impairment of cell viability. Transcriptional levels of Atp4a, essential for gastric acid secretion, showed a trend towards an up-regulation in H. suis positive pigs compared to H. suis-negative pigs. In addition, sonic hedgehog, an important factor involved in gastric epithelial differentiation, gastric mucosal repair, and stomach homeostasis, was also significantly up-regulated in H. suis positive pigs. In conclusion, this study describes a successful approach for the isolation and culture of porcine gastric parietal cells. The results indicate that H. suis affects the viability and function of this cell type

    Digital dermatitis in cattle is associated with an excessive innate immune response triggered by the keratinocytes

    Get PDF
    Background: Digital Dermatitis (DD) is a common disease of dairy cows, the pathogenesis of which is still not clear. This study examined some host responses associated with the typical lesions, in an attempt to further elucidate the pathogenesis of the disease. Twenty four samples representing the 5 different clinical stages of DD (M0-M4) were collected from slaughtered cattle for histopathological and immunological analyses. Results: Significant increases in total epidermal thickness were found in M2, M3, and M4 when compared with M0 and M1. M3 samples, when compared with M0 and M1, were characterized by a significant increase in the thickness of the keratin layer. Counts of both eosinophils and neutrophils were at a maximum in the M2 stage and decreased in the M3 and M4 stage. A significant increase in IL8 expression was observed in the M2-M3 stages of the disease and immunohistochemical staining showed the source as keratinocytes, suggesting an important role for keratinocyte-derived IL8 in the pathogenesis of DD. Conclusion: Results of the present study point to a strong stimulation of the innate immune response at the level of the keratinocytes throughout most of the clinical stages, and a delayed response of the adaptive immune reaction

    Analysis of cell hyperplasia and parietal cell dysfunction induced by Ostertagia ostertagi infection

    Get PDF
    Infections in cattle with the gastric nematode Ostertagia ostertagi are associated with decreased acid secretion and profound physio-morphological changes of the gastric mucosa. The purpose of the current study was to investigate the mechanisms triggering these pathophysiological changes. O. ostertagi infection resulted in a marked cellular hyperplasia, which can be explained by increased transcriptional levels of signaling molecules related to the homeostasis of gastric epithelial cells such as HES1, WNT5A, FGF10, HB-EGF, AREG, ADAM10 and ADAM17. Intriguingly, histological analysis indicated that the rapid rise in the gastric pH, observed following the emergence of adult worms, cannot be explained by a loss of parietal cells, as a decrease in the number of parietal cells was only observed following a long term infection of several weeks, but is likely to be caused by an inhibition of parietal cell activity. To investigate whether this inhibition is caused by a direct effect of the parasites, parietal cells were co-cultured with parasite Excretory/Secretory products (ESP) and subsequently analyzed for acid production. The results indicate that adult ESP inhibited acid secretion, whereas ESP from the L4 larval stages did not alter parietal cell function. In addition, our data show that the inhibition of parietal cell activity could be mediated by a marked upregulation of inflammatory factors, which are partly induced by adult ESP in abomasal epithelial cells. In conclusion, this study shows that the emergence of adult O. ostertagi worms is associated with marked cellular changes that can be partly triggered by the worm's Excretory/secretory antigens

    Myc-induced nuclear antigen constrains a latent intestinal epithelial cell-intrinsic anthelmintic pathway

    Get PDF
    <div><p>Expulsion of parasitic gastrointestinal nematodes requires diverse effector mechanisms coordinated by a Th2-type response. The evolutionarily conserved JmjC protein; Myc Induced Nuclear Antigen (Mina) has been shown to repress IL4, a key Th2 cytokine, suggesting Mina may negatively regulate nematode expulsion. Here we report that expulsion of the parasitic nematode <i>Trichuris muris</i> was indeed accelerated in Mina deficient mice. Unexpectedly, this was associated not with an elevated Th2- but rather an impaired Th1-type response. Further reciprocal bone marrow chimera and conditional KO experiments demonstrated that retarded parasite expulsion and a normal Th1-type response both required Mina in intestinal epithelial cells (IECs). Transcriptional profiling experiments in IECs revealed anti-microbial α-defensin peptides to be the major target of Mina-dependent retention of worms in infected mice. In vitro exposure to recombinant α-defensin peptides caused cytotoxic damage to whipworms. These results identify a latent IEC-intrinsic anthelmintic pathway actively constrained by Mina and point to α-defensins as important effectors that together with Mina may be attractive therapeutic targets for the control of nematode infection.</p></div

    Microfluidic device facilitates in vitro modeling of human neonatal necrotizing enterocolitis-on-a-chip

    Get PDF
    Necrotizing enterocolitis (NEC) is a deadly gastrointestinal disease of premature infants that is associated with an exaggerated inflammatory response, dysbiosis of the gut microbiome, decreased epithelial cell proliferation, and gut barrier disruption. We describe an in vitro model of the human neonatal small intestinal epithelium (Neonatal-Intestine-on-a-Chip) that mimics key features of intestinal physiology. This model utilizes intestinal enteroids grown from surgically harvested intestinal tissue from premature infants and cocultured with human intestinal microvascular endothelial cells within a microfluidic device. We used our Neonatal-Intestine-on-a-Chip to recapitulate NEC pathophysiology by adding infant-derived microbiota. This model, named NEC-on-a-Chip, simulates the predominant features of NEC, including significant upregulation of proinflammatory cytokines, decreased intestinal epithelial cell markers, reduced epithelial proliferation, and disrupted epithelial barrier integrity. NEC-on-a-Chip provides an improved preclinical model of NEC that facilitates comprehensive analysis of the pathophysiology of NEC using precious clinical samples. This model is an advance toward a personalized medicine approach to test new therapeutics for this devastating disease

    Interleukin-22 signaling attenuates necrotizing enterocolitis by promoting epithelial cell regeneration

    Get PDF
    Necrotizing enterocolitis (NEC) is a deadly intestinal inflammatory disorder that primarily affects premature infants and lacks adequate therapeutics. Interleukin (IL)-22 plays a critical role in gut barrier maintenance, promoting epithelial regeneration, and controlling intestinal inflammation in adult animal models. However, the importance of IL-22 signaling in neonates during NEC remains unknown. We investigated the role of IL-22 in the neonatal intestine under homeostatic and inflammatory conditions by using a mouse model of NEC. Our data reveal tha

    Development of a novel definitive scoring system for an enteral feed-only model of necrotizing enterocolitis in piglets

    Get PDF
    IntroductionNecrotizing enterocolitis (NEC) is a complex inflammatory disorder of the human intestine that most often occurs in premature newborns. Animal models of NEC typically use mice or rats; however, pigs have emerged as a viable alternative given their similar size, intestinal development, and physiology compared to humans. While most piglet NEC models initially administer total parenteral nutrition prior to enteral feeds, here we describe an enteral-feed only piglet model of NEC that recapitulates the microbiome abnormalities present in neonates that develop NEC and introduce a novel multifactorial definitive NEC (D-NEC) scoring system to assess disease severity.MethodsPremature piglets were delivered via Caesarean section. Piglets in the colostrum-fed group received bovine colostrum feeds only throughout the experiment. Piglets in the formula-fed group received colostrum for the first 24 h of life, followed by Neocate Junior to induce intestinal injury. The presence of at least 3 of the following 4 criteria were required to diagnose D-NEC: (1) gross injury score ≥4 of 6; (2) histologic injury score ≥3 of 5; (3) a newly developed clinical sickness score ≥5 of 8 within the last 12 h of life; and (4) bacterial translocation to ≥2 internal organs. Quantitative reverse transcription polymerase chain reaction was performed to confirm intestinal inflammation in the small intestine and colon. 16S rRNA sequencing was performed to evaluate the intestinal microbiome.ResultsCompared to the colostrum-fed group, the formula-fed group had lower survival, higher clinical sickness scores, and more severe gross and histologic intestinal injury. There was significantly increased bacterial translocation, D-NEC, and expression of IL-1α and IL-10 in the colon of formula-fed compared to colostrum-fed piglets. Intestinal microbiome analysis of piglets with D-NEC demonstrated lower microbial diversity and increased Gammaproteobacteria and Enterobacteriaceae.ConclusionsWe have developed a clinical sickness score and a new multifactorial D-NEC scoring system to accurately evaluate an enteral feed-only piglet model of NEC. Piglets with D-NEC had microbiome changes consistent with those seen in preterm infants with NEC. This model can be used to test future novel therapies to treat and prevent this devastating disease
    corecore