154 research outputs found

    Subclinical Atherosclerosis Burden by 3D Ultrasound in Mid-Life: The PESA Study

    Get PDF
    BACKGROUND: Detection of subclinical atherosclerosis improves risk prediction beyond cardiovascular risk factors (CVRFs) and risk scores, but quantification of plaque burden may improve it further. Novel 3-dimensional vascular ultrasound (3DVUS) provides accurate volumetric quantification of plaque burden. OBJECTIVES: The authors evaluated associations between 3DVUS-based plaque burden and CVRFs and explored potential added value over simple plaque detection. METHODS: The authors included 3,860 (92.2%) PESA (Progression of Early Subclinical Atherosclerosis) study participants (age 45.8 ± 4.3 years; 63% men). Bilateral carotid and femoral territories were explored by 3DVUS to determine the number of plaques and territories affected, and to quantify global plaque burden defined as the sum of all plaque volumes. Linear regression and proportional odds models were used to evaluate associations of plaque burden with CVRFs and estimated 10-year cardiovascular risk. RESULTS: Plaque burden was higher in men (63.4 mm3 [interquartile range (IQR): 23.8 to 144.8 mm3] vs. 25.7 mm3 [IQR: 11.5 to 61.6 mm3] in women; p < 0.001), in the femoral territory (64 mm3 [IQR: 27.6 to 140.5 mm3] vs. 23.1 mm3 [IQR: 9.9 to 48.7 mm3] in the carotid territory; p < 0.001), and with increasing age (p < 0.001). Age, sex, smoking, and dyslipidemia were more strongly associated with femoral than with carotid disease burden, whereas hypertension and diabetes showed no territorial differences. Plaque burden was directly associated with estimated cardiovascular risk independently of the number of plaques or territories affected (p < 0.01). CONCLUSIONS: 3DVUS quantifies higher plaque burden in men, in the femoral territory, and with increasing age during midlife. Plaque burden correlates strongly with CVRFs, especially at the femoral level, and reflects estimated cardiovascular risk more closely than plaque detection alone. (Progression of Early Subclinical Atherosclerosis [PESA] Study; NCT01410318).The PESA study is cofunded equally by the Fundacion Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain, and Banco Santander, Madrid, Spain. The study also receives funding from the Institute of Health Carlos III (PI15/02019) and the European Regional Development Fund (ERDF). The CNIC is supported by the Ministry of Economy, Industry and Competitiveness (MINECO) and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (MINECO award SEV-2015-0505). Dr. Sanchez-Gonzalez is an employee of Philips Healthcare. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose. Stephen J. Nicholls, MD, served as Guest Editor for this paperS

    T-cell epitopes of the major peach allergen, Pru p 3: Identification and differential T-cell response of peach-allergic and non-allergic subjects

    Get PDF
    Lipid transfer proteins (LTPs), particularly peach Pru p 3, are the most relevant plant food allergens in the South of Europe, and, therefore, their allergic properties have been extensively studied. However, neither T-cell epitopes nor their effect on the patients’ T-cell response has been investigated in any member of the LTP panallergen family. The objective of the present study was to map the major T-cell epitopes of Pru p 3, as well as to evaluate their induced T-cell response in peach-allergic versus control subjects. Thus, peripheral blood mononuclear cells (PBMCs) from 18 peach-allergic patients and Pru p 3-specific T-cell lines (TCLs) from 9 of them were cultured with Pru p 3 and with a panel of 17 derived peptides (10-mer overlapping in 5 amino acids representing the full sequence of Pru p 3). Proliferation in 5-day assays was carried out via tritiated-thymidine incorporation, while IL4 and IFNγ production was assessed via sandwich enzyme-linked immunosorbent tests (ELISA) of TCL culture supernatants. The results were compared to those obtained from 10 non-peach allergic control volunteers. Two consecutive peptides showed the highest activation capacity. About 74% of PBMCs and TCLs recognized them, forming a single T-epitope: Pru p 365–80. Additionally, other specific T-cell epitopes were observed. Pru p 325–35 was detected by more than 60% of TCLs from peach-allergic patients, and Pru p 345–55 only activated PBMCs from control subjects. Interestingly, TCLs from patients were associated with a Th2-type, whereas control TCLs presented a Th1-type cytokine response. The major immunogenic T-cell epitope identified in Pru p 3, Pru p 365–80, is a good candidate to develop new vaccines for hypersensitivity reactions associated with LTP allergens from Rosaceae fruits

    Cardiac Insulin Resistance in Subjects With Metabolic Syndrome Traits and Early Subclinical Atherosclerosis.

    Get PDF
    OBJECTIVE Experimental evidence suggests that metabolic syndrome (MetS) is associated with changes in cardiac metabolism. Whether this association occurs in humans is unknown. RESEARCH DESIGN AND METHODS 821 asymptomatic individuals from the Progression of Early Subclinical Atherosclerosis (PESA) study (50.6 [46.9-53.6] years, 83.7% male) underwent two whole-body 18F-fluorodeoxyglucose positron emission tomography-magnetic resonance (18F-FDG PET-MR) 4.8 ± 0.6 years apart. Presence of myocardial 18F-FDG uptake was evaluated qualitatively and quantitatively. No myocardial uptake was grade 0, while positive uptake was classified in grades 1-3 according to target-to-background ratio tertiles. RESULTS One hundred fifty-six participants (19.0%) showed no myocardial 18F-FDG uptake, and this was significantly associated with higher prevalence of MetS (29.0% vs. 13.9%, P < 0.001), hypertension (29.0% vs. 18.0%, P = 0.002), and diabetes (11.0% vs. 3.2%, P < 0.001), and with higher insulin resistance index (HOMA-IR, 1.64% vs. 1.23%, P < 0.001). Absence of myocardial uptake was associated with higher prevalence of early atherosclerosis (i.e., arterial 18F-FDG uptake, P = 0.004). On follow-up, the associations between myocardial 18F-FDG uptake and risk factors were replicated, and MetS was more frequent in the group without myocardial uptake. The increase in HOMA-IR was associated with a progressive decrease in myocardial uptake (P < 0.001). In 82% of subjects, the categorization according to presence/absence of myocardial 18F-FDG uptake did not change between baseline and follow-up. MetS regression on follow-up was associated with a significant (P < 0.001) increase in myocardial uptake. CONCLUSIONS Apparently healthy individuals without cardiac 18F-FDG uptake have higher HOMA-IR and higher prevalence of MetS traits, cardiovascular risk factors, and early atherosclerosis. An improvement in cardiometabolic profile is associated with the recovery of myocardial 18F-FDG uptake at follow-up.The PESA study is funded by the Centro Nacional de Investigaciones Cardiovasculares (CNIC) and Santander Bank. B.I. is supported by the European Commission (grant numbers 819775 and 945118), by the Spanish Ministry of Science and Innovation (PID2019- 110369RB-I00), and by the Red Madrilena de ~ Nanomedicina en Imagen Molecular-Comunidad de Madrid (S2017/BMD-3867 RENIM-CM). A.D. is an Alfonso Martin Escudero fellow and is scientifically supported by La Caixa Foundation. The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovacion (MCIN), and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (grant CEX2020-001041-S funded by MICIN/AEI/ 10.13039/501100011033).S

    Accurate quantification of atherosclerotic plaque volume by 3D vascular ultrasound using the volumetric linear array method.

    Get PDF
    Direct quantification of atherosclerotic plaque volume by three-dimensional vascular ultrasound (3DVUS) is more reproducible than 2DUS-based three-dimensional (2D/3D) techniques that generate pseudo-3D volumes from summed 2D plaque areas; however, its accuracy has not been reported. We aimed to determine 3DVUS accuracy for plaque volume measurement with special emphasis on small plaques (a hallmark of early atherosclerosis). The in vitro study consisted of nine phantoms of different volumes (small and medium-large) embedded at variable distances from the surface (superficial vs. >5 cm-depth) and comparison of 3DVUS data generated using a novel volumetric-linear array method with the real phantom volumes. The in vivo study was undertaken in a rabbit model of atherosclerosis in which 3DVUS and 2D/3D volume measurements were correlated against gold-standard histological measurements. In the in vitro setting, there was a strong correlation between 3DVUS measures and real phantom volume both for small (3.0-64.5 mm(3) size) and medium-large (91.1-965.5 mm(3) size) phantoms embedded superficially, with intraclass correlation coefficients (ICC) of 0.99 and 0.98, respectively; conversely, when phantoms were placed at >5 cm, the correlation was only moderate (ICC = 0.67). In the in vivo setting there was strong correlation between 3DVUS-measured plaque volumes and the histological gold-standard (ICC = 0.99 [4.02-92.5 mm(3) size]). Conversely, the correlation between 2D/3D values and the histological gold standard (sum of plaque areas) was weaker (ICC = 0.87 [49-520 mm(2) size]), with large dispersion of the differences between measurements in Bland-Altman plots (mean error, 79.2 mm(2)). 3DVUS using the volumetric-linear array method accurately measures plaque volumes, including those of small plaques. Measurements are more accurate for superficial arterial territories than for deep territories.S

    Summary report of MINSIS workshop in Madrid

    Full text link
    Recent developments on tau detection technologies and the construction of high intensity neutrino beams open the possibility of a high precision search for non-standard {\mu} - {\tau} flavour transition with neutrinos at short distances. The MINSIS - Main Injector Non-Standard Interaction Search- is a proposal under discussion to realize such precision measurement. This document contains the proceedings of the workshop which took place on 10-11 December 2009 in Madrid to discuss both the physics reach as well as the experimental requirements for this proposal.Comment: Proceedings of the MINSIS Workshop, Dec 10-11, 2009 in Madrid. 15 pages late

    Vascular Inflammation in Subclinical Atherosclerosis Detected by Hybrid PET/MRI

    Get PDF
    BACKGROUND: Atherosclerosis is a chronic inflammatory disease, but data on arterial inflammation at early stages is limited. OBJECTIVES: The purpose of this study was to characterize vascular inflammation by hybrid 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/magnetic resonance imaging (PET/MRI). METHODS: Carotid, aortic, and ilio-femoral 18F-FDG PET/MRI was performed in 755 individuals (age 40 to 54 years; 83.7% men) with known plaques detected by 2-/3-dimensional vascular ultrasound and/or coronary calcification in the PESA (Progression of Early Subclinical Atherosclerosis) study. The authors evaluated the presence, distribution, and number of arterial inflammatory foci (increased 18F-FDG uptake) and plaques with or without inflammation (coincident 18F-FDG uptake). RESULTS: Arterial inflammation was present in 48.2% of individuals (24.4% femorals, 19.3% aorta, 15.8% carotids, and 9.3% iliacs) and plaques in 90.1% (73.9% femorals, 55.8% iliacs, and 53.1% carotids). 18F-FDG arterial uptakes and plaques significantly increased with cardiovascular risk factors (p < 0.01). Coincident 18F-FDG uptakes were present in 287 of 2,605 (11%) plaques, and most uptakes were detected in plaque-free arterial segments (459 of 746; 61.5%). Plaque burden, defined by plaque presence, number, and volume, was significantly higher in individuals with arterial inflammation than in those without (p < 0.01). The number of plaques and 18F-FDG uptakes showed a positive albeit weak correlation (r = 0.25; p < 0.001). CONCLUSIONS: Arterial inflammation is highly prevalent in middle-aged individuals with known subclinical atherosclerosis. Large-scale multiterritorial PET/MRI allows characterization of atherosclerosis-related arterial inflammation and demonstrates 18F-FDG uptake in plaque-free arterial segments and, less frequently, within plaques. These findings suggest an arterial inflammatory state at early stages of atherosclerosis. (Progression of Early Subclinical Atherosclerosis [PESA]; NCT01410318).The PESA study is cofunded equally by the Centro Nacional de Investigaciones Cardiovasculares (CNIC) and Banco Santander. The study also receives funding from the Instituto de Salud Carlos III (PI15/02019) and the European Regional Development Fund (ERDF) “A way to make Europe.” The CNIC is supported by the Ministerio de Ciencia, Innovación y Universidades, and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505). Dr. Sanchez-González is an employee of Philips Healthcare. Dr. Bueno has received research funding from the Instituto de Salud Carlos III, Spain (PIE16/00021 & PI17/01799), AstraZeneca, Bristol-Myers Squibb, Janssen, and Novartis; has received consulting fees from AstraZeneca, Bayer, Bristol-Myers Squibb-Pfizer, and Novartis; and has received speaking fees or support for attending scientific meetings from AstraZeneca, Bayer, Bristol-Myers Squibb-Pfizer, Novartis, and MEDSCAPE-the heart.org.S

    Longitudinal interplay between subclinical atherosclerosis, cardiovascular risk factors, and cerebral glucose metabolism in midlife: results from the PESA prospective cohort study.

    Get PDF
    BACKGROUND Cardiovascular disease and dementia often coexist at advanced stages. Yet, longitudinal studies examining the interplay between atherosclerosis and its risk factors on brain health in midlife are scarce. We aimed to characterise the longitudinal associations between cerebral glucose metabolism, subclinical atherosclerosis, and cardiovascular risk factors in middle-aged asymptomatic individuals. METHODS The Progression of Early Subclinical Atherosclerosis (PESA) study is a Spanish longitudinal observational cohort study of 4184 asymptomatic individuals aged 40-54 years (NCT01410318). Participants with subclinical atherosclerosis underwent longitudinal cerebral [18F]fluorodeoxyglucose ([18F]FDG)-PET, and annual percentage change in [18F]FDG uptake was assessed (primary outcome). Cardiovascular risk was quantified with SCORE2 and subclinical atherosclerosis with three-dimensional vascular ultrasound (exposures). Multivariate regression and linear mixed effects models were used to assess associations between outcomes and exposures. Additionally, blood-based biomarkers of neuropathology were quantified and mediation analyses were performed. Secondary analyses were corrected for multiple comparisons using the false discovery rate (FDR) approach. FINDINGS This longitudinal study included a PESA subcohort of 370 participants (median age at baseline 49·8 years [IQR 46·1-52·2]; 309 [84%] men, 61 [16%] women; median follow-up 4·7 years [IQR 4·2-5·2]). Baseline scans took place between March 6, 2013, and Jan 21, 2015, and follow-up scans between Nov 24, 2017, and Aug 7, 2019. Persistent high risk of cardiovascular disease was associated with an accelerated decline of cortical [18F]FDG uptake compared with low risk (β=-0·008 [95% CI -0·013 to -0·002]; pFDR=0·040), with plasma neurofilament light chain, a marker of neurodegeneration, mediating this association by 20% (β=0·198 [0·008 to 0·740]; pFDR=0·050). Moreover, progression of subclinical carotid atherosclerosis was associated with an additional decline in [18F]FDG uptake in Alzheimer's disease brain regions, not explained by cardiovascular risk (β=-0·269 [95% CI -0·509 to -0·027]; p=0·029). INTERPRETATION Middle-aged asymptomatic individuals with persistent high risk of cardiovascular disease and subclinical carotid atherosclerosis already present brain metabolic decline, suggesting that maintenance of cardiovascular health during midlife could contribute to reductions in neurodegenerative disease burden later in life. FUNDING Spanish Ministry of Science and Innovation, Instituto de Salud Carlos III, Santander Bank, Pro-CNIC Foundation, BrightFocus Foundation, BBVA Foundation, "la Caixa" Foundation.Spanish Ministry of Science and Innovation, Instituto de Salud Carlos III, Santander Bank, Pro-CNIC Foundation, BrightFocus Foundation, BBVA Foundation, “la Caixa” Foundation. We thank the PESA participants and the imaging, administrative, and medical PESA teams. The PESA study is equally co-funded by the Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and Santander Bank (Madrid, Spain) and also receives funding from the Instituto de Salud Carlos III (ISCIII), Madrid, Spain (PI15/02019), the European Regional Development Fund (ERDF—A Way to Build Europe), and the European Social Fund (ESF—Investing in Your Future). CNIC is a Severo Ochoa Center of Excellence (CEX2020- 001041-S) and is supported by the ISCIII, the Spanish Ministry for Science and Innovation, and the Pro-CNIC Foundation. CT-P was supported by a “la Caixa” Foundation fellowship (ID 100010434, LCF/BQ/DI19/11730052). MC-C was supported by a Miguel Servet type II research contract (ISCIII, CPII21/00007) and the Fondo de Investigación Sanitaria (ISCIII, PI20/00819). We acknowledge the Sephardic Foundation on Aging and other donors of the Alzheimer’s Disease Research (grant number A2022034S), a programme of the BrightFocus Foundation, for support of this research. This work was also partially produced with the support of a 2021 Leonardo Grant for Researchers and Cultural Creators from the BBVA Foundation awarded to MC-C (the Foundation takes no responsibility for the opinions, statements, and contents of this project, which are entirely the responsibility of its authors). BI was supported by the European Research Council (ERC-2018-CoG 819775-MATRIX). MS is supported by the Knut and Alice Wallenberg Foundation (Wallenberg Centre for Molecular and Translational Medicine; KAW2014.0363), the Swedish Research Council (2017-02869, 2021-02678, 2021-06545), the Swedish state under the agreement between the Swedish Government and the County Councils, the ALF-agreement (ALFGBG-813971, ALFGBG-965326), the Swedish Brain Foundation (FO2021-0311), and the Swedish Alzheimer Foundation (AF-740191). MS-C receives funding from the European Research Council (grant agreement number 948677), project “PI19/00155”, funded by ISCIII and co-funded by the EU, and a fellowship from “la Caixa” Foundation (ID 100010434) and from the EU’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement number 847648 (LCF/BQ/PR21/11840004). HZ is a Wallenberg Scholar supported by grants from the Swedish Research Council (#2022-01018), the EU’s Horizon Europe research and innovation programme under grant agreement number 101053962, Swedish State Support for Clinical Research (#ALFGBG-71320), the Alzheimer Drug Discovery Foundation, USA (#201809-2016862), the AD Strategic Fund and the Alzheimer’s Association (#ADSF-21-831376-C, #ADSF-21-831381-C, #ADSF-21-831377-C), the Bluefield Project, the Olav Thon Foundation, the Erling-Persson Family Foundation, Stiftelsen för Gamla Tjänarinnor, Hjärnfonden, Sweden (#FO2022-0270), the EU’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement number 860197 (MIRIADE), the EU Joint Programme – Neurodegenerative Disease Research (JPND2021-00694), and the UK Dementia Research Institute at UCL (UKDRI-1003). KB is supported by the Swedish Research Council (#2017-00915, #2022-00732), the Swedish state under the agreement between the Swedish Government and the County Councils, the ALFagreement (#ALFGBG-715986, #ALFGBG-965240), the Swedish Alzheimer Foundation (#AF-930351, #AF-939721, #AF-968270), Hjärnfonden, Sweden (#FO2017-0243, #ALZ2022-0006), the Alzheimer’s Association 2021 Zenith Award (ZEN-21-848495), and the Alzheimer’s Association 2022–2025 grant (SG-23-1038904 QC).S

    Longitudinal interplay between subclinical atherosclerosis, cardiovascular risk factors, and cerebral glucose metabolism in midlife: results from the PESA prospective cohort study

    Get PDF
    BACKGROUND: Cardiovascular disease and dementia often coexist at advanced stages. Yet, longitudinal studies examining the interplay between atherosclerosis and its risk factors on brain health in midlife are scarce. We aimed to characterise the longitudinal associations between cerebral glucose metabolism, subclinical atherosclerosis, and cardiovascular risk factors in middle-aged asymptomatic individuals. METHODS: The Progression of Early Subclinical Atherosclerosis (PESA) study is a Spanish longitudinal observational cohort study of 4184 asymptomatic individuals aged 40-54 years (NCT01410318). Participants with subclinical atherosclerosis underwent longitudinal cerebral [18F]fluorodeoxyglucose ([18F]FDG)-PET, and annual percentage change in [18F]FDG uptake was assessed (primary outcome). Cardiovascular risk was quantified with SCORE2 and subclinical atherosclerosis with three-dimensional vascular ultrasound (exposures). Multivariate regression and linear mixed effects models were used to assess associations between outcomes and exposures. Additionally, blood-based biomarkers of neuropathology were quantified and mediation analyses were performed. Secondary analyses were corrected for multiple comparisons using the false discovery rate (FDR) approach. FINDINGS: This longitudinal study included a PESA subcohort of 370 participants (median age at baseline 49·8 years [IQR 46·1-52·2]; 309 [84%] men, 61 [16%] women; median follow-up 4·7 years [IQR 4·2-5·2]). Baseline scans took place between March 6, 2013, and Jan 21, 2015, and follow-up scans between Nov 24, 2017, and Aug 7, 2019. Persistent high risk of cardiovascular disease was associated with an accelerated decline of cortical [18F]FDG uptake compared with low risk (β=-0·008 [95% CI -0·013 to -0·002]; pFDR=0·040), with plasma neurofilament light chain, a marker of neurodegeneration, mediating this association by 20% (β=0·198 [0·008 to 0·740]; pFDR=0·050). Moreover, progression of subclinical carotid atherosclerosis was associated with an additional decline in [18F]FDG uptake in Alzheimer's disease brain regions, not explained by cardiovascular risk (β=-0·269 [95% CI -0·509 to -0·027]; p=0·029). INTERPRETATION: Middle-aged asymptomatic individuals with persistent high risk of cardiovascular disease and subclinical carotid atherosclerosis already present brain metabolic decline, suggesting that maintenance of cardiovascular health during midlife could contribute to reductions in neurodegenerative disease burden later in life. FUNDING: Spanish Ministry of Science and Innovation, Instituto de Salud Carlos III, Santander Bank, Pro-CNIC Foundation, BrightFocus Foundation, BBVA Foundation, "la Caixa" Foundation
    corecore