2,933 research outputs found

    Equilibrium random-field Ising critical scattering in the antiferromagnet Fe(0.93)Zn(0.07)F2

    Full text link
    It has long been believed that equilibrium random-field Ising model (RFIM) critical scattering studies are not feasible in dilute antiferromagnets close to and below Tc(H) because of severe non-equilibrium effects. The high magnetic concentration Ising antiferromagnet Fe(0.93)Zn(0.07)F2, however, does provide equilibrium behavior. We have employed scaling techniques to extract the universal equilibrium scattering line shape, critical exponents nu = 0.87 +- 0.07 and eta = 0.20 +- 0.05, and amplitude ratios of this RFIM system.Comment: 4 pages, 1 figure, minor revision

    Fast vectorized algorithm for the Monte Carlo Simulation of the Random Field Ising Model

    Full text link
    An algoritm for the simulation of the 3--dimensional random field Ising model with a binary distribution of the random fields is presented. It uses multi-spin coding and simulates 64 physically different systems simultaneously. On one processor of a Cray YMP it reaches a speed of 184 Million spin updates per second. For smaller field strength we present a version of the algorithm that can perform 242 Million spin updates per second on the same machine.Comment: 13 pp., HLRZ 53/9

    Summary of the 13th IACHEC Meeting

    Get PDF
    We summarize the outcome of the 13th meeting of the International Astronomical Consortium for High Energy Calibration (IACHEC), held at Tenuta dei Ciclamini (Avigliano Umbro, Italy) in April 2018. Fifty-one scientists directly involved in the calibration of operational and future high-energy missions gathered during 3.5 days to discuss the current status of the X-ray payload inter-calibration and possible approaches to improve it. This summary consists of reports from the various working groups with topics ranging from the identification and characterization of standard calibration sources, multi-observatory cross-calibration campaigns, appropriate and new statistical techniques, calibration of instruments and characterization of background, and communication and preservation of knowledge and results for the benefit of the astronomical community.Comment: 12 page

    Static and dynamic structure factors in three-dimensional randomly diluted Ising models

    Full text link
    We consider the three-dimensional randomly diluted Ising model and study the critical behavior of the static and dynamic spin-spin correlation functions (static and dynamic structure factors) at the paramagnetic-ferromagnetic transition in the high-temperature phase. We consider a purely relaxational dynamics without conservation laws, the so-called model A. We present Monte Carlo simulations and perturbative field-theoretical calculations. While the critical behavior of the static structure factor is quite similar to that occurring in pure Ising systems, the dynamic structure factor shows a substantially different critical behavior. In particular, the dynamic correlation function shows a large-time decay rate which is momentum independent. This effect is not related to the presence of the Griffiths tail, which is expected to be irrelevant in the critical limit, but rather to the breaking of translational invariance, which occurs for any sample and which, at the critical point, is not recovered even after the disorder average.Comment: 43 page

    Relic density of neutralino dark matter in the MSSM with CP violation

    Get PDF
    We calculate the relic density of dark matter in the MSSM with CP violation. We analyse various scenarios of neutralino annihilation: the cases of a bino, bino-wino and bino-Higgsino LSP, annihilation through Higgs, as well as sfermion coannihilation scenarios. Large phase effects are found, on the one hand due to shifts in the masses, on the other hand due to modifications of the couplings. Taking special care to disentangle the effects in masses and couplings, we demonstrate that the presence of CP phases can have a significant influence on the neutralino relic abundance. Typical variations in \Omega h^2 solely from modifications in the couplings are O(10%-100%), but can reach an order of magnitude in some cases.Comment: 36 pages, 21 figures (low resolution). A version with high-resolution figures can be downloaded from http://cern.ch/kraml/papers/omc

    Glassy transition in the three-dimensional random field Ising model

    Full text link
    The high temperature phase of the three dimensional random field Ising model is studied using replica symmetry breaking framework. It is found that, above the ferromagnetic transition temperature T_f, there appears a glassy phase at intermediate temperatures T_f<T<T_b while the usual paramagnetic phase exists for T>T_b only. Correlation length at T_b is computed and found to be compatible with previous numerical results.Comment: 7 pages, LaTeX file, preprint 1014 - Rome

    Weak first order transition in the three-dimensional site-diluted Ising antiferromagnet in a magnetic field

    Get PDF
    We perform intensive numerical simulations of the three-dimensional site-diluted Ising antiferromagnet in a magnetic field at high values of the external applied field. Even if data for small lattice sizes are compatible with second-order criticality, the critical behavior of the system shows a crossover from second-order to first-order behavior for large system sizes, where signals of latent heat appear. We propose "apparent" critical exponents for the dependence of some observables with the lattice size for a generic (disordered) first-order phase transition.Comment: Final version, accepted for publicatio

    Destruction of first-order phase transition in a random-field Ising model

    Full text link
    The phase transitions that occur in an infinite-range-interaction Ising ferromagnet in the presence of a double-Gaussian random magnetic field are analyzed. Such random fields are defined as a superposition of two Gaussian distributions, presenting the same width σ\sigma. Is is argued that this distribution is more appropriate for a theoretical description of real systems than its simpler particular cases, i.e., the bimodal (σ=0\sigma=0) and the single Gaussian distributions. It is shown that a low-temperature first-order phase transition may be destructed for increasing values of σ\sigma, similarly to what happens in the compound FexMg1xCl2Fe_{x}Mg_{1-x}Cl_{2}, whose finite-temperature first-order phase transition is presumably destructed by an increase in the field randomness.Comment: 13 pages, 3 figure

    Tricritical Points in the Sherrington-Kirkpatrick Model in the Presence of Discrete Random Fields

    Full text link
    The infinite-range-interaction Ising spin glass is considered in the presence of an external random magnetic field following a trimodal (three-peak) distribution. The model is studied through the replica method and phase diagrams are obtained within the replica-symmetry approximation. It is shown that the border of the ferromagnetic phase may present first-order phase transitions, as well as tricritical points at finite temperatures. Analogous to what happens for the Ising ferromagnet under a trimodal random field, it is verified that the first-order phase transitions are directly related to the dilution in the fields (represented by p0p_{0}). The ferromagnetic boundary at zero temperature also exhibits an interesting behavior: for 0<p0<p00.308560<p_{0}<p_{0}^{*} \approx 0.30856, a single tricritical point occurs, whereas if p0>p0p_{0}>p_{0}^{*} the critical frontier is completely continuous; however, for p0=p0p_{0}=p_{0}^{*}, a fourth-order critical point appears. The stability analysis of the replica-symmetric solution is performed and the regions of validity of such a solution are identified; in particular, the Almeida-Thouless line in the plane field versus temperature is shown to depend on the weight p0p_{0}.Comment: 23pages, 7 ps figure

    Trust and privacy in distributed work groups

    Get PDF
    Proceedings of the 2nd International Workshop on Social Computing, Behavioral Modeling and PredictionTrust plays an important role in both group cooperation and economic exchange. As new technologies emerge for communication and exchange, established mechanisms of trust are disrupted or distorted, which can lead to the breakdown of cooperation or to increasing fraud in exchange. This paper examines whether and how personal privacy information about members of distributed work groups influences individuals' cooperation and privacy behavior in the group. Specifically, we examine whether people use others' privacy settings as signals of trustworthiness that affect group cooperation. In addition, we examine how individual privacy preferences relate to trustworthy behavior. Understanding how people interact with others in online settings, in particular when they have limited information, has important implications for geographically distributed groups enabled through new information technologies. In addition, understanding how people might use information gleaned from technology usage, such as personal privacy settings, particularly in the absence of other information, has implications for understanding many potential situations that arise in pervasively networked environments.Preprin
    corecore