85 research outputs found
Scattering of evanescent wave by two cylinders near a flat boundary
Two-dimensional problem of evanescent wave scattering by dielectric or
metallic cylinders near the interface between two dielectric media is solved
numerically by boundary integral equations method. A special Green function was
proposed to avoid the infinite integration. A pattern with a circular and a
prolate elliptic cylinders, respectively, is suggested to simulate the sample
and the probe in near-field optical microscopy. The energy flux in the midplane
of the probe-cylinder is calculated as a function of its position.Comment: 10 pages, 4 figure
Accuracy of one-dimensional collision integral in the rigid spheres approximation
The accuracy of calculation of spectral line shapes in one-dimensional
approximation is studied analytically in several limiting cases for arbitrary
collision kernel and numerically in the rigid spheres model. It is shown that
the deviation of the line profile is maximal in the center of the line in case
of large perturber mass and intermediate values of collision frequency. For
moderate masses of buffer molecules the error of one-dimensional approximation
is found not to exceed 5%.Comment: LaTeX, 24 pages, 8 figure
Stable U(IV) Complexes Form at High-Affinity Mineral Surface Sites
Uranium (U) poses a significant contamination hazard to soils, sediments, and groundwater due to its extensive use for energy production. Despite advances in modeling the risks of this toxic and radioactive element, lack of information about the mechanisms controlling U transport hinders further improvements, particularly in reducing environments where UIV predominates. Here we establish that mineral surfaces can stabilize the majority of U as adsorbed UIV species following reduction of UVI. Using X-ray absorption spectroscopy and electron imaging analysis, we find that at low surface loading, UIV forms inner-sphere complexes with two metal oxides, TiO2 (rutile) and Fe3O4 (magnetite) (at <1.3 U nmâ2 and <0.037 U nmâ2, respectively). The uraninite (UO2) form of UIV predominates only at higher surface loading. UIVâTiO2 complexes remain stable for at least 12 months, and UIVâFe3O4 complexes remain stable for at least 4 months, under anoxic conditions. Adsorbed UIV results from UVI reduction by FeII or by the reduced electron shuttle AH2QDS, suggesting that both abiotic and biotic reduction pathways can produce stable UIVâmineral complexes in the subsurface. The observed control of high-affinity mineral surface sites on UIV speciation helps explain the presence of nonuraninite UIV in sediments and has important implications for U transport modeling
Protective Intestinal Effects of Pituitary Adenylate Cyclase Activating Polypeptide
Pituitary adenylate cyclase activating polypeptide (PACAP) is an
endogenous neuropeptide widely distributed throughout the body, including the
gastrointestinal tract. Several effects have been described in human and animal
intestines. Among others, PACAP infl uences secretion of intestinal glands, blood
fl ow, and smooth muscle contraction. PACAP is a well-known cytoprotective peptide
with strong anti-apoptotic, anti-infl ammatory, and antioxidant effects. The
present review gives an overview of the intestinal protective actions of this neuropeptide.
Exogenous PACAP treatment was protective in a rat model of small bowel
autotransplantation. Radioimmunoassay (RIA) analysis of the intestinal tissue showed that endogenous PACAP levels gradually decreased with longer-lasting
ischemic periods, prevented by PACAP addition. PACAP counteracted deleterious
effects of ischemia on oxidative stress markers and cytokines. Another series of
experiments investigated the role of endogenous PACAP in intestines in PACAP
knockout (KO) mice. Warm ischemiaâreperfusion injury and cold preservation models
showed that the lack of PACAP caused a higher vulnerability against ischemic
periods. Changes were more severe in PACAP KO mice at all examined time points.
This fi nding was supported by increased levels of oxidative stress markers and
decreased expression of antioxidant molecules. PACAP was proven to be protective
not only in ischemic but also in infl ammatory bowel diseases. A recent study showed
that PACAP treatment prolonged survival of Toxoplasma gondii infected mice suffering
from acute ileitis and was able to reduce the ileal expression of proinfl ammatory
cytokines. We completed the present review with recent clinical results obtained
in patients suffering from infl ammatory bowel diseases. It was found that PACAP
levels were altered depending on the activity, type of the disease, and antibiotic
therapy, suggesting its probable role in infl ammatory events of the intestine
- âŠ