5 research outputs found

    Multiplexed detection of cancer biomarkers using an optical biosensor

    Get PDF
    Early detection of cancer is important in administering timely treatment and increasing cancer survival rates. For early cancer detection one can use biomarkers, which are characteristics that can be objectively measured or evaluated as indicators of normal or pathogenic processes. In our study we study three protein biomarkers: carcinoembryonic antigen (CEA), interleukin-6 (IL-6) and extracellular protein kinase A (ECPKA), which have been implicated in various types of human cancer. The main objective of this project is to develop a biosensor for detection of multiple cancer biomarkers. To detect these protein biomarkers high affinity ssDNA aptamers are being selected. Aptamers are short single stranded DNAs with an ability to bind to various targets with high affinity and specificity which selected by SELEX (Systemic Evolution of Ligands through Exponential enrichment) [2]. Ultimately, aptamers against each of the biomarker will be conjugated to magnetic nanoparticles to capture biomarkers from biological fluids. Another aptamer is proposed to be conjugated to quantum dots for quantitation of biomarkers when analyzed on spectrometer

    Multiplexed detection of cancer biomarkers using an optical biosensor

    Get PDF
    Early detection of cancer is important in administering timely treatment and increasing cancer survival rates. For early cancer detection one can use biomarkers, which are characteristics that can be objectively measured or evaluated as indicators of normal or pathogenic processes. In our study we study three protein biomarkers: carcinoembryonic antigen (CEA), interleukin-6 (IL-6) and extracellular protein kinase A (ECPKA), which have been implicated in various types of human cancer. The main objective of this project is to develop a biosensor for detection of multiple cancer biomarkers. To detect these protein biomarkers high affinity ssDNA aptamers are being selected. Aptamers are short single stranded DNAs with an ability to bind to various targets with high affinity and specificity which selected by SELEX (Systemic Evolution of Ligands through Exponential enrichment) [2]. Ultimately, aptamers against each of the biomarker will be conjugated to magnetic nanoparticles to capture biomarkers from biological fluids. Another aptamer is proposed to be conjugated to quantum dots for quantitation of biomarkers when analyzed on spectrometer

    Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages

    Get PDF
    Generalist and specialist species differ in the breadth of their ecological niches. Little is known about the niche width of obligate human pathogens. Here we analyzed a global collection of Mycobacterium tuberculosis lineage 4 clinical isolates, the most geographically widespread cause of human tuberculosis. We show that lineage 4 comprises globally distributed and geographically restricted sublineages, suggesting a distinction between generalists and specialists. Population genomic analyses showed that, whereas the majority of human T cell epitopes were conserved in all sublineages, the proportion of variable epitopes was higher in generalists. Our data further support a European origin for the most common generalist sublineage. Hence, the global success of lineage 4 reflects distinct strategies adopted by different sublineages and the influence of human migration.We thank S. Lecher, S. Li and J. Zallet for technical support. Calculations were performed at the sciCORE scientific computing core facility at the University of Basel. This work was supported by the Swiss National Science Foundation (grants 310030_166687 (S.G.) and 320030_153442 (M.E.) and Swiss HIV Cohort Study grant 740 to L.F.), the European Research Council (309540-EVODRTB to S.G.), TB-PAN-NET (FP7-223681 to S.N.), PathoNgenTrace projects (FP7-278864-2 to S.N.), SystemsX.ch (S.G.), the German Center for Infection Research (DZIF; S.N.), the Novartis Foundation (S.G.), the Natural Science Foundation of China (91631301 to Q.G.), and the National Institute of Allergy and Infectious Diseases (5U01-AI069924-05) of the US National Institutes of Health (M.E.)
    corecore