5 research outputs found

    Development and validation of quantitative PCR assays for HIV-associated cryptococcal meningitis in sub-Saharan Africa: a diagnostic accuracy study

    Get PDF
    Background: HIV-associated cryptococcal meningitis is the second leading cause of AIDS-related deaths, with a 10-week mortality rate of 25–30%. Fungal load assessed by colony-forming unit (CFU) counts is used as a prognostic marker and to monitor response to treatment in research studies. PCR-based assessment of fungal load could be quicker and less labour-intensive. We sought to design, optimise, and validate quantitative PCR (qPCR) assays for the detection, identification, and quantification of Cryptococcus infections in patients with cryptococcal meningitis in sub-Saharan Africa. Methods: We developed and validated species-specific qPCR assays based on DNA amplification of QSP1 (QSP1A specific to Cryptococcus neoformans, QSP1B/C specific to Cryptococcus deneoformans, and QSP1D specific to Cryptococcus gattii species) and a pan-Cryptococcus assay based on a multicopy 28S rRNA gene. This was a longitudinal study that validated the designed assays on cerebrospinal fluid (CSF) of 209 patients with cryptococcal meningitis at baseline (day 0) and during anti-fungal therapy (day 7 and day 14), from the AMBITION-cm trial in Botswana and Malawi (2018–21). Eligible patients were aged 18 years or older and presenting with a first case of cryptococcal meningitis. Findings: When compared with quantitative cryptococcal culture as the reference, the sensitivity of the 28S rRNA was 98·2% (95% CI 95·1–99·5) and of the QSP1 assay was 90·4% (85·2–94·0) in CSF at day 0. Quantification of the fungal load with QSP1 and 28S rRNA qPCR correlated with quantitative cryptococcal culture (R2=0·73 and R2=0·78, respectively). Both Botswana and Malawi had a predominant C neoformans prevalence of 67% (95% CI 55–75) and 68% (57–73), respectively, and lower C gattii rates of 21% (14–31) and 8% (4–14), respectively. We identified ten patients that, after 14 days of treatment, harboured viable but non-culturable yeasts based on QSP1 RNA detection (without any positive CFU in CSF culture). Interpretation: QSP1 and 28S rRNA assays are useful in identifying Cryptococcus species. qPCR results correlate well with baseline quantitative cryptococcal culture and show a similar decline in fungal load during induction therapy. These assays could be a faster alternative to quantitative cryptococcal culture to determine fungal load clearance. The clinical implications of the possible detection of viable but non-culturable cells in CSF during induction therapy remain unclear

    Development and validation of quantitative PCR assays for HIV-associated cryptococcal meningitis in sub-Saharan Africa: a diagnostic accuracy study

    Get PDF
    Background: HIV-associated cryptococcal meningitis is the second leading cause of AIDS-related deaths, with a 10-week mortality rate of 25–30%. Fungal load assessed by colony-forming unit (CFU) counts is used as a prognostic marker and to monitor response to treatment in research studies. PCR-based assessment of fungal load could be quicker and less labour-intensive. We sought to design, optimise, and validate quantitative PCR (qPCR) assays for the detection, identification, and quantification of Cryptococcus infections in patients with cryptococcal meningitis in sub-Saharan Africa. Methods: We developed and validated species-specific qPCR assays based on DNA amplification of QSP1 (QSP1A specific to Cryptococcus neoformans, QSP1B/C specific to Cryptococcus deneoformans, and QSP1D specific to Cryptococcus gattii species) and a pan-Cryptococcus assay based on a multicopy 28S rRNA gene. This was a longitudinal study that validated the designed assays on cerebrospinal fluid (CSF) of 209 patients with cryptococcal meningitis at baseline (day 0) and during anti-fungal therapy (day 7 and day 14), from the AMBITION-cm trial in Botswana and Malawi (2018–21). Eligible patients were aged 18 years or older and presenting with a first case of cryptococcal meningitis. Findings: When compared with quantitative cryptococcal culture as the reference, the sensitivity of the 28S rRNA was 98·2% (95% CI 95·1–99·5) and of the QSP1 assay was 90·4% (85·2–94·0) in CSF at day 0. Quantification of the fungal load with QSP1 and 28S rRNA qPCR correlated with quantitative cryptococcal culture (R2=0·73 and R2=0·78, respectively). Both Botswana and Malawi had a predominant C neoformans prevalence of 67% (95% CI 55–75) and 68% (57–73), respectively, and lower C gattii rates of 21% (14–31) and 8% (4–14), respectively. We identified ten patients that, after 14 days of treatment, harboured viable but non-culturable yeasts based on QSP1 RNA detection (without any positive CFU in CSF culture). Interpretation: QSP1 and 28S rRNA assays are useful in identifying Cryptococcus species. qPCR results correlate well with baseline quantitative cryptococcal culture and show a similar decline in fungal load during induction therapy. These assays could be a faster alternative to quantitative cryptococcal culture to determine fungal load clearance. The clinical implications of the possible detection of viable but non-culturable cells in CSF during induction therapy remain unclear. Funding: European and Developing Countries Clinical Trials Partnership; Swedish International Development Cooperation Agency; Wellcome Trust/UK Medical Research Council/UKAID Joint Global Health Trials; and UK National Institute for Health Research

    South Africa's agricultural dust sources and events from MSG SEVIRI

    No full text
    Geomorphological dust research in Southern African has focused on natural sources in Namibia and Botswana. Here we aim to identify South Africa's dust sources using the Spinning Enhanced Visible and Infra-red Imager data (SEVIRI) between 2006 to 2016. A total of 334,497 images identified 178 dust plumes on 75 dust days, which originate mostly from the Free State, between June to January. Source areas consist of commercial agriculture, grass and shrublands. Half of all event days in the record occurred between 2015 and 2016, a severe drought, according to the Standardised Precipitation Evapotranspiration Index. Crop statistics report a decline in maize cover from 1.2 to 0.6 million hectares and a pronounced increase in fallow cover, confirmed by a below average Normalized Difference Vegetation Index. Transport-capacity appears to be enhanced during drought years and on the increase in wind records. All dust event days adhere to a diurnal wind pattern, irrespective of synoptic conditions and most trajectories head towards the Indian Ocean. In terms of both frequency and extend, SEVIRI events are minor when compared to the northern hemisphere. However South Africa's major dust sources differ in that they appear to be mostly associated with anthropogenic activities especially rainfed agriculture. The emission potential from natural surfaces remains to be examined. Fire however is not a common precursor in dusty years. The widespread Luvisols and Arenosols, are rich in silt and sand, extend into the wider interior, including the Kalahari, where future climate scenarios by others have predicted increases in dust emissions

    Testing novel strategies for patients hospitalised with HIV-associated disseminated tuberculosis (NewStrat-TB): protocol for a randomised controlled trial

    Get PDF
    Background: HIV-associated tuberculosis (TB) contributes disproportionately to global tuberculosis mortality. Patients hospitalised at the time of the diagnosis of HIV-associated disseminated TB are typically severely ill and have a high mortality risk despite initiation of tuberculosis treatment. The objective of the study is to assess the safety and efficacy of both intensified TB treatment (high dose rifampicin plus levofloxacin) and immunomodulation with corticosteroids as interventions to reduce early mortality in hospitalised patients with HIV-associated disseminated TB. Methods: This is a phase III randomised controlled superiority trial, evaluating two interventions in a 2 Ă— 2 factorial design: (1) high dose rifampicin (35 mg/kg/day) plus levofloxacin added to standard TB treatment for the first 14 days versus standard tuberculosis treatment and (2) adjunctive corticosteroids (prednisone 1.5 mg/kg/day) versus identical placebo for the first 14 days of TB treatment. The study population is HIV-positive patients diagnosed with disseminated TB (defined as being positive by at least one of the following assays: urine Alere LAM, urine Xpert MTB/RIF Ultra or blood Xpert MTB/RIF Ultra) during a hospital admission. The primary endpoint is all-cause mortality at 12 weeks comparing, first, patients receiving intensified TB treatment to standard of care and, second, patients receiving corticosteroids to those receiving placebo. Analysis of the primary endpoint will be by intention to treat. Secondary endpoints include all-cause mortality at 2 and 24 weeks. Safety and tolerability endpoints include hepatoxicity evaluations and corticosteroid-related adverse events. Discussion: Disseminated TB is characterised by a high mycobacterial load and patients are often critically ill at presentation, with features of sepsis, which carries a high mortality risk. Interventions that reduce this high mycobacterial load or modulate associated immune activation could potentially reduce mortality. If found to be safe and effective, the interventions being evaluated in this trial could be easily implemented in clinical practice. Trial registration: ClinicalTrials.gov NCT04951986. Registered on 7 July 2021 https://clinicaltrials.gov/study/NCT04951986

    Development and validation of quantitative PCR assays for HIV-associated cryptococcal meningitis in sub-Saharan Africa: a diagnostic accuracy study

    No full text
    Background: HIV-associated cryptococcal meningitis is the second leading cause of AIDS-related deaths, with a 10-week mortality rate of 25–30%. Fungal load assessed by colony-forming unit (CFU) counts is used as a prognostic marker and to monitor response to treatment in research studies. PCR-based assessment of fungal load could be quicker and less labour-intensive. We sought to design, optimise, and validate quantitative PCR (qPCR) assays for the detection, identification, and quantification of Cryptococcus infections in patients with cryptococcal meningitis in sub-Saharan Africa. Methods: We developed and validated species-specific qPCR assays based on DNA amplification of QSP1 (QSP1A specific to Cryptococcus neoformans, QSP1B/C specific to Cryptococcus deneoformans, and QSP1D specific to Cryptococcus gattii species) and a pan-Cryptococcus assay based on a multicopy 28S rRNA gene. This was a longitudinal study that validated the designed assays on cerebrospinal fluid (CSF) of 209 patients with cryptococcal meningitis at baseline (day 0) and during anti-fungal therapy (day 7 and day 14), from the AMBITION-cm trial in Botswana and Malawi (2018–21). Eligible patients were aged 18 years or older and presenting with a first case of cryptococcal meningitis. Findings: When compared with quantitative cryptococcal culture as the reference, the sensitivity of the 28S rRNA was 98·2% (95% CI 95·1–99·5) and of the QSP1 assay was 90·4% (85·2–94·0) in CSF at day 0. Quantification of the fungal load with QSP1 and 28S rRNA qPCR correlated with quantitative cryptococcal culture (R2=0·73 and R2=0·78, respectively). Both Botswana and Malawi had a predominant C neoformans prevalence of 67% (95% CI 55–75) and 68% (57–73), respectively, and lower C gattii rates of 21% (14–31) and 8% (4–14), respectively. We identified ten patients that, after 14 days of treatment, harboured viable but non-culturable yeasts based on QSP1 RNA detection (without any positive CFU in CSF culture). Interpretation: QSP1 and 28S rRNA assays are useful in identifying Cryptococcus species. qPCR results correlate well with baseline quantitative cryptococcal culture and show a similar decline in fungal load during induction therapy. These assays could be a faster alternative to quantitative cryptococcal culture to determine fungal load clearance. The clinical implications of the possible detection of viable but non-culturable cells in CSF during induction therapy remain unclear. Funding: European and Developing Countries Clinical Trials Partnership; Swedish International Development Cooperation Agency; Wellcome Trust/UK Medical Research Council/UKAID Joint Global Health Trials; and UK National Institute for Health Research
    corecore