1,045 research outputs found
Influence of the sample geometry on the vortex matter in superconducting microstructures
The dependence of the vortex penetration and expulsion on the geometry of
mesoscopic superconductors is reported. Hall magnetometry measurements were
performed on a superconducting Al square and triangle. The stability of the
vortex patterns imposed by the sample geometry is discussed. The
field-temperature diagram has been reconstructed showing the transitions
between states with different vorticity. We have found that the vortex
penetration is only weakly affected by the vortex configuration inside the
sample while the expulsion is strongly controlled by the stability of the
vortex patterns. A qualitative explanation for this observation is given.Comment: 6 pages, 4 figures, accepted for publication in Phys. Rev.
Evolution of multi-gap superconductivity in the atomically thin limit: Strain-enhanced three-gap superconductivity in monolayer MgB
Starting from first principles, we show the formation and evolution of
superconducting gaps in MgB at its ultrathin limit. Atomically thin MgB
is distinctly different from bulk MgB in that surface states become
comparable in electronic density to the bulk-like - and -bands.
Combining the ab initio electron-phonon coupling with the anisotropic
Eliashberg equations, we show that monolayer MgB develops three distinct
superconducting gaps, on completely separate parts of the Fermi surface due to
the emergent surface contribution. These gaps hybridize nontrivially with every
extra monolayer added to the film, owing to the opening of additional coupling
channels. Furthermore, we reveal that the three-gap superconductivity in
monolayer MgB is robust over the entire temperature range that stretches up
to a considerably high critical temperature of 20 K. The latter can be boosted
to 50 K under biaxial tensile strain of 4\%, which is an enhancement
stronger than in any other graphene-related superconductor known to date.Comment: To appear in Phys. Re
Tensor gauge fields in arbitrary representations of GL(D,R): II. Quadratic actions
Quadratic, second-order, non-local actions for tensor gauge fields
transforming in arbitrary irreducible representations of the general linear
group in D-dimensional Minkowski space are explicitly written in a compact form
by making use of Levi-Civita tensors. The field equations derived from these
actions ensure the propagation of the correct massless physical degrees of
freedom and are shown to be equivalent to non-Lagrangian local field equations
proposed previously. Moreover, these actions allow a frame-like reformulation a
la MacDowell-Mansouri, without any trace constraint in the tangent indices.Comment: LaTeX, 53 pages, no figure. Accepted for publication in
Communications in Mathematical Physics. Local Fierz-Pauli programme achieved
by completing the analysis of Labastid
Origin and significance of cosmogenic signatures in vesicles of lunar basalt 15016
Lunar basalt 15016 (~3.3 Ga) is among the most vesicular (50% by volume) basalts recovered by the Apollo missions. We investigated the possible occurrence of indigenous lunar nitrogen and noble gases trapped in vesicles within basalt 15016, by crushing several cm‐sized chips. Matrix/mineral gases were also extracted from crush residues by fusion with a CO_2 laser. No magmatic/primordial component could be identified; all isotope compositions, including those of vesicles, pointed to a cosmogenic origin. We found that vesicles contained ~0.2%, ~0.02%, ~0.002%, and ~0.02% of the total amount of cosmogenic ^(21)Ne, ^(38)Ar, ^(83)Kr, and ^(126)Xe, respectively, produced over the basalt's 300 Myr of exposure. Diffusion/recoil of cosmogenic isotopes from the basaltic matrix/minerals to intergrain joints and vesicles is discussed. The enhanced proportion of cosmogenic Xe isotopes relative to Kr detected in vesicles could be the result of kinetic fractionation, through which preferential retention of Xe isotopes over Kr within vesicles might have occurred during diffusion from the vesicle volume to the outer space through microleaks. This study suggests that cosmogenic loss, known to be significant for ^3He and ^(21)Ne, and to a lesser extent for ^(36)Ar (Signer et al. 1977), also occurs to a negligible extent for the heaviest noble gases Kr and Xe
Superconductivity in functionalized niobium-carbide MXenes
We show the effect of Cl and S functionalization on the superconducting
properties of layered (bulk) and monolayer niobium carbide (NbC) MXene
crystals, based on first-principles calculations combined with Eliashberg
theory. For the bulk layered NbCCl, the calculated superconducting
transition temperature () is in very good agreement with the recently
measured value of 6 K. We show that is enhanced to 10 K for monolayer
NbCCl, due to an increase in the density of states at the Fermi level,
and the corresponding electron-phonon coupling. We further demonstrate a
feasible gate-induced enhancement of up to 40 K for both bulk-layered and
monolayer NbCCl crystals. For the S-functionalized cases our
calculations reveal the importance of phonon softening in understanding their
superconducting properties. Finally, we predict that NbCS in
bulk-layered and monolayer form is potentially superconducting, with a
around 30 K. Considering that NbC is not superconducting in pristine form,
our findings promote functionalization as a pathway towards robust
superconductivity in MXenes
Enhancing superconductivity in MXenes through hydrogenation
Two-dimensional transition metal carbides and nitrides (MXenes) are an
emerging class of atomically-thin superconductors, whose characteristics are
highly prone to tailoring by surface functionalization. Here we explore the use
of hydrogen adatoms to enhance phonon-mediated superconductivity in MXenes,
based on first-principles calculations combined with Eliashberg theory. We
first demonstrate the stability of three different structural models of
hydrogenated Mo- and W-based MXenes. Particularly high critical temperatures of
over 30 K are obtained for hydrogenated MoN and WN. Several mechanisms
responsible for the enhanced electron-phonon coupling are uncovered, namely (i)
hydrogen-induced changes in the phonon spectrum of the host MXene, (ii)
emerging hydrogen-based phonon modes, and (iii) charge transfer from hydrogen
to the MXene layer, boosting the density of states at the Fermi level. Finally,
we demonstrate that hydrogen adatoms are moreover able to induce
superconductivity in MXenes that are not superconducting in pristine form, such
as NbC
Isotopic evidence for the formation of the moon in a canonical giant impact
© The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nielsen, S. G., Bekaert, D. V., & Auro, M. Isotopic evidence for the formation of the moon in a canonical giant impact. Nature Communications, 12(1), (2021): 1817, https://doi.org/10.1038/s41467-021-22155-7.Isotopic measurements of lunar and terrestrial rocks have revealed that, unlike any other body in the solar system, the Moon is indistinguishable from the Earth for nearly every isotopic system. This observation, however, contradicts predictions by the standard model for the origin of the Moon, the canonical giant impact. Here we show that the vanadium isotopic composition of the Moon is offset from that of the bulk silicate Earth by 0.18 ± 0.04 parts per thousand towards the chondritic value. This offset most likely results from isotope fractionation on proto-Earth during the main stage of terrestrial core formation (pre-giant impact), followed by a canonical giant impact where ~80% of the Moon originates from the impactor of chondritic composition. Our data refute the possibility of post-giant impact equilibration between the Earth and Moon, and implies that the impactor and proto-Earth mainly accreted from a common isotopic reservoir in the inner solar system.This study was funded by NASA Emerging Worlds grant NNX16AD36G to S.G.N. We thank NASA-JSC, Tony Irving, and Thorsten Kleine for access to meteorite and Apollo mission samples. US Antarctic meteorite samples are recovered by the Antarctic Search for Meteorites (ANSMET) program, which has been funded by NSF and NASA, and characterized and curated by the Astromaterials Curation Office at NASA Johnson Space Center and the Department of Mineral Sciences of the Smithsonian Institution. J. Blusztajn is thanked for help with mass spectrometry support at WHOI
An operative gamma camera for sentinel lymph node procedure in case of breast cancer
Large field of view gamma cameras are widely used to perform lymphoscintigraphy in the sentinel lymph nodes (SLN) procedure in case of breast cancer. However, they are not specified for this application and their sizes do not enable their use in the operative room to control the excision of the all SLN. We present the results obtained with a prototype of a new mini gamma camera developed especially for the operative lymphoscintigraphy of the axillary area in case of breast cancer. This prototype is composed of 10 mm thick parallel lead collimator, a 2 mm thick GSO:Ce inorganic scintillating crystal from Hitachi and a Hamamatsu H8500 flat panel multianode (64 channels) photomultiplier tube (MAPMT) equipped with a dedicated electronics. Its actual field of view is 50 × 50mm2. The gamma interaction position in the GSO scintillating plate is obtained by calculating the center of gravity of the fired MAPMT channels. The measurements performed with this prototype demonstrate the usefulness of this mini gamma camera for the pre, per and post-operative identification of SLN's and how its complementary role with an intraoperative handheld gamma probe enables to improve the efficiency of this practice. A 100 × 100mm2 field of view camera designated to cover the entire axillary area is under investigation
Salinity of the Archaean oceans from analysis of fluid inclusions in quartz
Fluids trapped in inclusions in well-characterized Archaean hydrothermal quartz crystals were analyzed by the extended argon–argon method, which permits the simultaneous measurement of chlorine and potassium concentrations. Argon and nitrogen isotopic compositions of the trapped fluids were also determined by static mass spectrometry. Fluids were extracted by stepwise crushing of quartz samples from North Pole (NW Australia) and Barberton (South Africa) 3.5–3.0-Ga-old greenstone belts. The data indicate that fluids are a mixture of a low salinity end-member, regarded as the Archaean oceanic water, and several hydrothermal end-members rich in Cl, K, N, and radiogenic parentless ^(40)Ar. The low Cl–K end-member suggests that the salinity of the Archaean oceans was comparable to the modern one, and that the potassium content of the Archaean oceans was lower than at present by about 40%. A constant salinity of the oceans through time has important implications for the stabilization of the continental crust and for the habitability of the ancient Earth
A custom designed density estimation method for light transport
We present a new Monte Carlo method for solving the global illumination problem in environments with general geometry descriptions and light emission and scattering properties. Current Monte Carlo global illumination algorithms are based on generic density estimation techniques that do not take into account any knowledge about the nature of the data points --- light and potential particle hit points --- from which a global illumination solution is to be reconstructed. We propose a novel estimator, especially designed for solving linear integral equations such as the rendering equation. The resulting single-pass global illumination algorithm promises to combine the flexibility and robustness of bi-directional path tracing with the efficiency of algorithms such as photon mapping
- …