26 research outputs found

    Study of the Microbial Diversity of a Newly Discovered East Antarctic Freshwater Lake, L27C, and of a Perennially Ice-Covered Lake Untersee

    Get PDF
    The microbial communities that reside within freshwater lakes of Schirmacher and Untersee Oases in East Antarctica must cope with extreme conditions that may include cold temperature, annual freeze-thaw cycles, exposure to UV radiation, especially during the austral summer months, low light beneath thick ice-cover, followed by seasonal darkness. The objective of this study was to assess the microbial biodiversity and distribution from samples taken from two freshwater lakes (L27C and Lake Untersee) that were collected during the Tawani 2008 International Antarctic Expedition that conducted research in this region of Antarctica. L27C is a small, previously unreported lake residing 2 km WNW of Maitri Station at Schirmacher Oasis. Biodiversity and distribution of microorganisms within the lake were studied using both culture-independent and culture-dependent methodologies based upon the analysis of eubacterial 16S rRNA gene sequences. Lake Untersee, a perennially ice-covered, ultra-oligotrophic, lake in the Otto-von-Gruber-Gebirge (Gruber Mountains) of central Dronning Maud Land was also sampled and the microbial diversity was analyzed by eubacterial 16S rRNA gene sequences derived from pure cultures. Direct culturing of water samples from each lake on separate R2A growth medium exhibited a variety of microorganisms including: Janthinobacterium, Hymenobacter, Sphingamonas, Subtercola, Deinococcus, Arthrobacter, Flavobacterium, Polaromonas, Rhodoferax and Duganella. The evaluation of samples from L27C through culture-independent methodology identified a rich microbial diversity consisting of six different phyla of bacteria. The culture-independent analysis also displayed the majority of bacteria (56%) belonged to the Class gamma-proteobacteria within the phylum Proteobacteria. Within the Class gamma-proteobacteria, Acinetobacter dominated (48%) the total microbial load. Overall, L27C exhibited 7 different phyla of bacteria and 20 different genera. Statistical analysis (Shannon-Weaver Diversity Index and Simpson Diversity Index) of the biodiversity of L27C displayed a moderately rich and diverse community. Investigations of the biodiversity and distribution of microorganisms in these lakes will help further our understanding of how the physical environment impact the structure and function within these microbially dominated ecosystems

    Comparison of the Microbial Diversity and Abundance Between the Freshwater Land-locked lakes of Schirmacher Oasis and the Perennially Ice-covered Lake Untersee in East Antarctica

    Get PDF
    Extreme conditions such as low temperature, dryness, and constant UV-radiation in terrestrial Antarctica are limiting factors of the survival of microbial populations. The objective of this study was to investigate the microbial diversity and enumeration between the open water lakes of Schirmacher Oasis and the permanently ice-covered Lake Untersee. The lakes in Schirmacher Oasis possessed abundant and diverse group of microorganisms compared to the Lake Untersee. Furthermore, the microbial diversity between two lakes in Schirmacher Oasis (Lake L27C and L47) was compared by culture-based molecular approach. It was determined that L27Chad a richer microbial diversity representing 5 different phyla and 7 different genera. In contrast L47 consisted of 4 different phyla and 6 different genera. The difference in microbial community could be due to the wide range of pH between L27C (pH 9.1) and L47 (pH 5.7). Most of the microbes isolated from these lakes consisted of adaptive biological pigmentation. Characterization of the microbial community found in the freshwater lakes of East Antarctica is important because it gives a further glimpse into the adaptation and survival strategies found in extreme conditions

    CRISPR-Cas system:A new paradigm for bacterial stress response through genome rearrangement

    Get PDF
    Bacteria can receive genetic material from other bacteria or invading bacteriophages primarily through horizontal gene transfer. These genetic exchanges can result in genome rearrangement and the acquisition of novel traits that assist cells with stresses and adverse environmental conditions. Bacteria have a relatively small genome with >90% of sequences consisting of protein coding genes, stable RNA biomolecules, and gene regulatory sequences. The remaining genome fraction is primarily large repeat elements, such as retrotransposons, interspersed repeat elements, insertion sequences, and the more recently discovered clustered regularly interspaced short palindromic repeats (CRISPRs), with CRISPR-associated gene sequences (cas) that code for various Cas proteins. The CRISPR genetic locus is a series of direct repeats that are interspersed by unique spacer sequences. These unique spacer sequences represent signatures of bacteriophage genomes as the "working memory" for a bacterium to identify and destroy an invading phage genome that has previously infected the host. The protective function of the CRISPR-Cas systems are found in ∼40% of sequenced bacterial genomes, and it is often defined as bacterial acquired immunity. This chapter will elaborate the origin, structure, and function of CRISPR-Cas genetic systems acquired by bacteria, and their role in adaptive fitness while being subjected to environmental stress conditions

    Thermococcus Thioreducens sp. Nov., a Novel Hyperthermophilic, Obligately Sulfur-reducing Archaeon from a Deep-sea Hydrothermal Vent

    Get PDF
    A hyperthermophilic, sulfur-reducing, organo-heterotrophic archaeon, strain OGL-20P was isolated from black smoker chimney material from the Rainbow hydrothermal vent site on the Mid-Atlantic Ridge (36.2 N, 33.9 W). The cells of strain OGL-20P(sup T) have an irregular coccoid shape and are motile with a single flagellum. Growth was observed within the pH range 5.0-8.5 (optimum pH 7.0), NaCl concentration range 1-5 % (w/v) (optimum 3%), and temperature range 55-94 C (optimum 83-85 C). The novel isolate is strictly anaerobic and obligately dependent upon elemental sulfur as an electron acceptor, but it does not reduce sulfate, sulfite, thiosulfate, iron (III) or nitrate. Proteolysis products (peptone, bacto-tryptone, casamino-acids, and yeast extract) are utilized as substrates during sulfur-reduction. Strain OGL-20P(sup T) is resistant to ampicillin, chloramphenicol, kanamycin, and gentamycin, but sensitive to tetracycline and rifampicin. The G+C content of DNA is 52.9 mol%. The 16S rRNA gene sequence analysis revealed that strain OGL-20P(sup T) is closely related to Thermococcus coalescens and related species, but no significant homology by DNA-DNA hybridization was observed between those species and the new isolate. On the basis of physiological and molecular properties of the new isolate, we conclude that strain OGL-20P(sup T) represents a new separate species within the genus Thermococcus, and propose the name Thermococcus thioreducens sp. nov. The type strain is OGL-20P(sup T) (= ATCC BAA-394(sup T) = JCM 12859(sup T) = DSM 14981(sup T))

    Metagenomic data of the bacterial community in coastal Gulf of Mexico sediment microcosms following exposure to Macondo oil (MC252)

    No full text
    The data in this article includes the sequences of bacterial 16S rRNA gene from metagenome of Macondo oil (MC252)-treated and non-oil-treated sediment microcosms, collected from coastal Gulf of Mexico and Bayou La Batre, USA. Metacommunity DNA was PCR amplified with 341F and 907R oligonucleotide primers, targeting V3–V5 regions of the 16S rRNA gene. Data were generated by using bacterial tag-encoded FLX-amplicon pyrosequencing (bTEFAP) methodology and then processed using bioinformatics tools such as QIIME. The data information is deposited to NCBI׳s BioProject and BioSample and raw sequence files are available via NCBI׳s Sequence Read Archive (SRA) database

    Real-Time PCR Detection of Vibrio vulnificus in Oysters: Comparison of Oligonucleotide Primers and Probes Targeting vvhA

    No full text
    We compared three sets of oligonucleotide primers and two probes designed for Vibrio vulnificus hemolysin A gene (vvhA) for TaqMan-based real-time PCR method enabling specific detection of Vibrio vulnificus in oysters. Two of three sets of primers with a probe were specific for the detection of all 81 V. vulnificus isolates by TaqMan PCR. The 25 nonvibrio and 12 other vibrio isolates tested were negative. However, the third set of primers, F-vvh1059 and R-vvh1159, with the P-vvh1109 probe, although positive for all V. vulnificus isolates, also exhibited positive cycle threshold (C(T)) values for other Vibrio spp. Optimization of the TaqMan PCR assay using F-vvh785/R-vvh990 or F-vvh731/R-vvh1113 primers and the P-vvh874 probe detected 1 pg of purified DNA and 10(3) V. vulnificus CFU/ml in pure cultures. The enriched oyster tissue homogenate did not exhibit detectable inhibition to the TaqMan PCR amplification of vvhA. Detection of 3 × 10(3) CFU V. vulnificus, resulting from a 5-h enrichment of an initial inoculum of 1 CFU/g of oyster tissue homogenate, was achieved with F-vvh785/R-vvh990 or F-vvh731/R-vvh1113 primers and P-vvh875 probe. The application of the TaqMan PCR using these primers and probe, exhibited detection of V. vulnificus on 5-h-enriched natural oysters harvested from the Gulf of Mexico. Selection of appropriate primers and a probe on vvhA for TaqMan-PCR-based detection of V. vulnificus in post-harvest-treated oysters would help avoid false-positive results, thus ensuring a steady supply of safe oysters to consumers and reducing V. vulnificus-related illnesses and deaths

    PCR Detection of a Newly Emerged Pandemic Vibrio parahaemolyticus O3:K6 Pathogen in Pure Cultures and Seeded Waters from the Gulf of Mexico

    No full text
    This study describes the optimization of PCR parameters and testing of a wide number of microbial species to establish a highly specific and sensitive PCR-based method of detection of a newly emerged pandemic Vibrio parahaemolyticus O3:K6 strain in pure cultures and seeded waters from the Gulf of Mexico (gulf water). The selected open reading frame 8 (ORF8) DNA-specific oligonucleotide primers tested were found to specifically amplify all 35 pathogenic V. parahaemolyticus O3:K6 pandemic isolates, whereas these primers were not found to detectably amplify two strains of V. parahaemolyticus O3:K6 that were isolated prior to the 1996 outbreaks, 122 non-O3:K6 strains of V. parahaemolyticus, 198 non-V. parahaemolyticus spp., or 16 non-Vibrio bacterial spp. The minimum level of detection by the PCR method was 1 pg of purified genomic DNA or 10(2) ORF8-positive V. parahaemolyticus O3:K6 cells in 100 ml of water. The effectiveness of this method for the detection of ORF8-positive isolates in environmental samples was tested in gulf water seeded with 10-fold serial dilutions of this pathogen. A detection level of 10(3) cells per 100 ml of gulf water was achieved. Also, the applicability of this methodology was tested by the detection of this pathogen in gulf water incubated at various temperatures for 28 days. This PCR approach can potentially be used to monitor with high specificity and well within the required range of sensitivity the occurrence and distribution of this newly emerged pathogenic V. parahaemolyticus O3:K6 strain in coastal, marine, and ship ballast waters. Early detection of V. parahaemolyticus O3:K6 will help increase seafood safety and decrease the risk of infectious outbreaks caused by this pathogen

    Rapid Detection of Vibrio vulnificus in Shellfish and Gulf of Mexico Water by Real-Time PCR

    No full text
    In this paper we describe optimization of SYBR Green I-based real-time PCR parameters and testing of a large number of microbial species with vvh-specific oligonucleotide primers to establish a rapid, specific, and sensitive method for detection of Vibrio vulnificus in oyster tissue homogenate and Gulf of Mexico water (gulf water). Selected oligonucleotide primers for the vvh gene were tested for PCR amplification of a 205-bp DNA fragment with a melting temperature of approximately 87°C for 84 clinical and environmental strains of V. vulnificus. No amplification was observed with other vibrios or nonvibrio strains with these primers. The minimum level of detection by the real-time PCR method was 1 pg of purified genomic DNA or 10(2) V. vulnificus cells in 1 g of unenriched oyster tissue homogenate or 10 ml of gulf water. It was possible to improve the level of detection to one V. vulnificus cell in samples that were enriched for 5 h. The standard curves prepared from the real-time PCR cycle threshold values revealed that there was a strong correlation between the number of cells in unenriched samples and the number of cells in enriched samples. Detection of a single cell of V. vulnificus in 1 g of enriched oyster tissue homogenate is in compliance with the recent Interstate Shellfish Sanitation Conference guidelines. The entire detection method, including sample processing, enrichment, and real-time PCR amplification, was completed within 8 h, making it a rapid single-day assay. Rapid and sensitive detection of V. vulnificus would ensure a steady supply of postharvest treated oysters to consumers, which should help decrease the number of illnesses or outbreaks caused by this pathogen

    Detection of pathogenic Vibrio spp. in shellfish by using multiplex PCR and DNA microarrays

    No full text
    This study describes the development of a gene-specific DNA microarray coupled with multiplex PCR for the comprehensive detection of pathogenic vibrios that are natural inhabitants of warm coastal waters and shellfish. Multiplex PCR with vvh and viuB for Vibrio vulnificus, with ompU, toxR, tcpI, and hlyA for V. cholerae, and with tlh, tdh, trh, and open reading frame 8 for V. parahaemolyticus helped to ensure that total and pathogenic strains, including subtypes of the three Vibrio spp., could be detected and discriminated. For DNA microarrays, oligonucleotide probes for these targeted genes were deposited onto epoxysilane-derivatized, 12-well, Teflon-masked slides by using a MicroGrid II arrayer. Amplified PCR products were hybridized to arrays at 50 degrees C and detected by using tyramide signal amplification with Alexa Fluor 546 fluorescent dye. Slides were imaged by using an arrayWoRx scanner. The detection sensitivity for pure cultures without enrichment was 10(2) to 10(3) CFU/ml, and the specificity was 100%. However, 5 h of sample enrichment followed by DNA extraction with Instagene matrix and multiplex PCR with microarray hybridization resulted in the detection of 1 CFU in 1 g of oyster tissue homogenate. Thus, enrichment of the bacterial pathogens permitted higher sensitivity in compliance with the Interstate Shellfish Sanitation Conference guideline. Application of the DNA microarray methodology to natural oysters revealed the presence of V. vulnificus (100%) and V. parahaemolyticus (83%). However, V. cholerae was not detected in natural oysters. An assay involving a combination of multiplex PCR and DNA microarray hybridization would help to ensure rapid and accurate detection of pathogenic vibrios in shellfish, thereby improving the microbiological safety of shellfish for consumers
    corecore