8 research outputs found

    Comparison of monocyte human leukocyte antigen-DR expression and stimulated tumor necrosis factor alpha production as outcome predictors in severe sepsis: A prospective observational study

    Get PDF
    BACKGROUND: Identifying patients in the immunosuppressive phase of sepsis is essential for development of immunomodulatory therapies. Little data exists comparing the ability of the two most well-studied markers of sepsis-induced immunosuppression, human leukocyte antigen (HLA)-DR expression and lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-ɑ) production, to predict mortality and morbidity. The purpose of this study was to compare HLA-DR expression and LPS-induced TNF-ɑ production as predictors of 28-day mortality and acquisition of secondary infections in adult septic patients. METHODS: A single-center, prospective observational study of 83 adult septic patients admitted to a medical or surgical intensive care unit. Blood samples were collected at three time points during the septic course (days 1–2, days 3–4, and days 6–8 after sepsis diagnosis) and assayed for HLA-DR expression and LPS-induced TNF-ɑ production. A repeated measures mixed model analysis was used to compare values of these immunological markers among survivors and non-survivors and among those who did and did not develop a secondary infection. RESULTS: Twenty-five patients (30.1 %) died within 28 days of sepsis diagnosis. HLA-DR expression was significantly lower in non-survivors as compared to survivors on days 3–4 (p = 0.04) and days 6–8 (p = 0.002). The change in HLA-DR from days 1–2 to days 6–8 was also lower in non-survivors (p = 0.04). Median HLA-DR expression decreased from days 1–2 to days 3–4 in patients who developed secondary infections while it increased in those without secondary infections (p = 0.054). TNF-ɑ production did not differ between survivors and non-survivors or between patients who did and did not develop a secondary infection. CONCLUSIONS: Monocyte HLA-DR expression may be a more accurate predictor of mortality and acquisition of secondary infections than LPS-stimulated TNF-ɑ production in adult medical and surgical critically ill patients. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13054-016-1505-0) contains supplementary material, which is available to authorized users

    T cells from patients with Candida sepsis display a suppressive immunophenotype

    Get PDF
    BACKGROUND: Despite appropriate therapy, Candida bloodstream infections are associated with a mortality rate of approximately 40 %. In animal models, impaired immunity due to T cell exhaustion has been implicated in fungal sepsis mortality. The purpose of this study was to determine potential mechanisms of fungal-induced immunosuppression via immunophenotyping of circulating T lymphocytes from patients with microbiologically documented Candida bloodstream infections. METHODS: Patients with blood cultures positive for any Candida species were studied. Non-septic critically ill patients with no evidence of bacterial or fungal infection were controls. T cells were analyzed via flow cytometry for cellular activation and for expression of positive and negative co-stimulatory molecules. Both the percentages of cells expressing particular immunophenotypic markers as well as the geometric mean fluorescence intensity (GMFI), a measure of expression of the number of receptors or ligands per cell, were quantitated. RESULTS: Twenty-seven patients with Candida bloodstream infections and 16 control patients were studied. Compared to control patients, CD8 T cells from patients with Candidemia had evidence of cellular activation as indicated by increased CD69 expression while CD4 T cells had decreased expression of the major positive co-stimulatory molecule CD28. CD4 and CD8 T cells from patients with Candidemia expressed markers typical of T cell exhaustion as indicated by either increased percentages of or increased MFI for programmed cell death 1 (PD-1) or its ligand (PD-L1). CONCLUSIONS: Circulating immune effector cells from patients with Candidemia display an immunophenotype consistent with immunosuppression as evidenced by T cell exhaustion and concomitant downregulation of positive co-stimulatory molecules. These findings may help explain why patients with fungal sepsis have a high mortality despite appropriate antifungal therapy. Development of immunoadjuvants that reverse T cell exhaustion and boost host immunity may offer one way to improve outcome in this highly lethal disorder. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13054-016-1182-z) contains supplementary material, which is available to authorized users

    Metadata record for: HIT-COVID, a global database tracking public health interventions to COVID-19

    No full text
    This dataset contains key characteristics about the data described in the Data Descriptor HIT-COVID, a global database tracking public health interventions to COVID-19. Contents: 1. human readable metadata summary table in CSV format 2. machine readable metadata file in JSON forma

    Measurement of the Branching Fraction of B0J/ψπ0B^{0} \rightarrow J/\psi \pi^{0} Decays

    No full text
    International audienceThe ratio of branching fractions between B0J/ψπ0B^{0} \rightarrow J/\psi \pi^{0} and B+J/ψK+B^{+} \rightarrow J/\psi K^{*+} decays is measured with proton-proton collision data collected by the LHCb experiment, corresponding to an integrated luminosity of 9 fb1^{-1}. The measured value is BB0J/ψπ0BB+J/ψK+=(1.153±0.053±0.048)×102\frac{\mathcal{B}_{B^{0} \rightarrow J/\psi \pi^{0}}}{\mathcal{B}_{B^{+} \rightarrow J/\psi K^{*+}}} = (1.153 \pm 0.053 \pm 0.048 ) \times 10^{-2}, where the first uncertainty is statistical and the second is systematic. The branching fraction for B0J/ψπ0B^{0} \rightarrow J/\psi \pi^{0} decays is determined using the branching fraction of the normalisation channel, resulting in BB0J/ψπ0=(1.670±0.077±0.069±0.095)×105\mathcal{B}_{B^{0} \rightarrow J/\psi \pi^{0}} = (1.670 \pm 0.077 \pm 0.069 \pm 0.095) \times 10^{-5}, where the last uncertainty corresponds to that of the external input. This result is consistent with the current world average value and competitive with the most precise single measurement to date

    Test of lepton flavour universality using B0Dτ+ντB^0 \to D^{*-}\tau^+\nu_{\tau} decays with hadronic τ\tau channels

    No full text
    The branching fraction B(B0Dτ+ντ)\mathcal{B}(B^0 \to D^{*-}\tau^+\nu_\tau) is measured relative to that of the normalisation mode B0Dπ+ππ+B^0 \to D^{*-}\pi^+\pi^-\pi^+ using hadronic τ+π+ππ+(π0)νˉτ\tau^+ \to \pi^+\pi^-\pi^+(\pi^0)\bar{\nu}_\tau decays in proton-proton collision data at a centre-of-mass energy of 13 TeV collected by the LHCb experiment, corresponding to an integrated luminosity of 2 fb1^{-1}. The measured ratio is B(B0Dτ+ντ)/B(B0Dπ+ππ+)=1.70±0.100.10+0.11\mathcal{B}(B^0 \to D^{*-}\tau^+\nu_\tau)/\mathcal{B}(B^0 \to D^{*-}\pi^+\pi^-\pi^+)= 1.70 \pm 0.10^{+0.11}_{-0.10}, where the first uncertainty is statistical and the second is related to systematic effects. Using established branching fractions for the B0Dπ+ππ+B^0 \to D^{*-}\pi^+\pi^-\pi^+ and B0Dμ+νμB^0 \to D^{*-} \mu^+\nu_\mu modes, the lepton universality test, R(D)B(B0Dτ+ντ)/B(B0Dμ+νμ)\mathcal{R}(D^{*-}) \equiv \mathcal{B}(B^0 \to D^{*-}\tau^+\nu_\tau)/\mathcal{B}(B^0 \to D^{*-} \mu^+\nu_\mu) is calculated, R(D)=0.247±0.015±0.015±0.012, \mathcal{R}(D^{*-}) = 0.247 \pm 0.015 \pm 0.015 \pm 0.012\, , where the third uncertainty is due to the uncertainties on the external branching fractions. This result is consistent with the Standard Model prediction and with previous measurements.The branching fraction B(B0→D*-τ+ντ) is measured relative to that of the normalization mode B0→D*-π+π-π+ using hadronic τ+→π+π-π+(π0)ν¯τ decays in proton-proton collision data at a center-of-mass energy of 13 TeV collected by the LHCb experiment, corresponding to an integrated luminosity of 2  fb-1. The measured ratio is B(B0→D*-τ+ντ)/B(B0→D*-π+π-π+)=1.70±0.10-0.10+0.11, where the first uncertainty is statistical and the second is related to systematic effects. Using established branching fractions for the B0→D*-π+π-π+ and B0→D*-μ+νμ modes, the lepton universality test R(D*-)≡B(B0→D*-τ+ντ)/B(B0→D*-μ+νμ) is calculated, R(D*-)=0.247±0.015±0.015±0.012, where the third uncertainty is due to the uncertainties on the external branching fractions. This result is consistent with the Standard Model prediction and with previous measurements.The branching fraction B(B0Dτ+ντ)\mathcal{B}(B^0 \to D^{*-}\tau^+\nu_{\tau}) is measured relative to that of the normalisation mode B0Dπ+ππ+B^0 \to D^{*-}\pi^+\pi^-\pi^+ using hadronic τ+π+ππ+(π0)νˉτ\tau^+ \to \pi^+\pi^-\pi^+(\pi^0)\bar{\nu}_{\tau} decays in proton-proton collision data at a centre-of-mass energy of 13 TeV collected by the LHCb experiment, corresponding to an integrated luminosity of 2 fb1^{-1}. The measured ratio is B(B0Dτ+ντ)/B(B0Dπ+ππ+)=1.70±0.100.10+0.11\mathcal{B}(B^0 \to D^{*-}\tau^+\nu_{\tau})/\mathcal{B}(B^0 \to D^{*-}\pi^+\pi^-\pi^+)= 1.70 \pm 0.10^{+0.11}_{-0.10}, where the first uncertainty is statistical and the second is related to systematic effects. Using established branching fractions for the B0Dπ+ππ+B^0 \to D^{*-}\pi^+\pi^-\pi^+ and B0Dμ+νμB^0 \to D^{*-} \mu^+\nu_\mu modes, the lepton universality test, R(D)B(B0Dτ+ντ)/B(B0Dμ+νμ)\mathcal{R}(D^{*-}) \equiv \mathcal{B}(B^0 \to D^{*-}\tau^+\nu_{\tau})/\mathcal{B}(B^0 \to D^{*-} \mu^+\nu_\mu) is calculated, R(D)=0.247±0.015±0.015±0.012, \mathcal{R}(D^{*-}) = 0.247 \pm 0.015 \pm 0.015 \pm 0.012\, , where the third uncertainty is due to the uncertainties on the external branching fractions. This result is consistent with the Standard Model prediction and with previous measurements
    corecore