290 research outputs found
Graphite ionization vacuum gauge
Triode gauge with electron source, electron collector, and positive ion collector made from either graphite or carbon material extends low-pressure ranges of existing gauges by changing only materials used in construction. Advantages of graphite gauge stem from physical properties of graphite (or carbon)
Development of UHF measurements
Collector gauge and orbitron gauge for ultrahigh vacuum measurement
Recommended from our members
Implementing Systems Engineering on a CERCLA Project
The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), enacted in 1980, provides a regulatory and legal mechanism to reduce risks from prior disposal of hazardous and toxic chemicals. Regulations, Standards, and Guidelines have been published to further define the CERCLA Process. The OU 7-10 Staged Interim Action Project at the Idaho National Engineering and Environmental Laboratory (INEEL) is a CERCLA project working to remediate the pre-1970 disposal pit in which transuranic materials have been disposed. This paper analyzes the CERCLA process from a systems engineering perspective and describes how systems engineering is implemented on this project
Mechanical Instabilities of Biological Tubes
We study theoretically the shapes of biological tubes affected by various
pathologies. When epithelial cells grow at an uncontrolled rate, the negative
tension produced by their division provokes a buckling instability. Several
shapes are investigated : varicose, enlarged, sinusoidal or sausage-like, all
of which are found in pathologies of tracheal, renal tubes or arteries. The
final shape depends crucially on the mechanical parameters of the tissues :
Young modulus, wall-to-lumen ratio, homeostatic pressure. We argue that since
tissues must be in quasistatic mechanical equilibrium, abnormal shapes convey
information as to what causes the pathology. We calculate a phase diagram of
tubular instabilities which could be a helpful guide for investigating the
underlying genetic regulation
Recommended from our members
Alternatives to Reduce Corrosion of Carbon Steel Storage Drums
The major tasks of this research were (a) pollution prevention opportunity assessments on the overpacking operations for failed or corroded drums, (b) research on existing container corrosion data, (c) investigation of the storage environment of the new Resource Conservation and Recovery Act Type II storage modules, (d) identification of waste streams that demonstrate deleterious corrosion affects on drum storage life, and (e) corrosion test cell program development. Twenty-one waste streams from five US Department of Energy (DOE) sites within the DOE Complex were identified to demonstrate a deleterious effect to steel storage drums. The major components of these waste streams include acids, salts, and solvent liquids, sludges, and still bottoms. The solvent-based waste streams typically had the shortest time to failure: 0.5 to 2 years. The results of this research support the position that pollution prevention evaluations at the front end of a project or process will reduce pollution on the back end
Recommended from our members
Rationale and Development of a Security Assurance Index with Application toward the Development of a World Risk Index
Assurance categories were previously developed to support the Department of Homeland Security’s efforts in the mitigation of Cyber Control System events. Defined according to the risk of life and economic loss, the minimum range is designated by policy, whereas the maximum limit seems to be constrained only by limits and interdependencies of the event. Use of this life / assets scale has proven to be helpful in managing risk due to the scale's ease of use, communication, and understanding. Suggestions have been made that this scale could be applied to all events of terror, disaster, and calamity of an international scale, with equally good results. This paper presents the history of some existing scales of disaster and assurance, the rationale behind the development of the original Security Assurance Index, and our proposed scale of disaster and calamity as a World Risk Index
Interaction particles from the surface of the curved pipeline
The interaction of the agglomerated fine dust particles from the surface of the rotary pyleprovoda, given deposit formation evaluation. The interaction of large particles to the surface of the rotary pyleprovoda. The analysis of hydrodynamic phenomena in the means of protection against wear
Recommended from our members
Digging for Treasure - Unique Fate and Transport Study
In 1970, scientists at the National Bureau of Standards (NBS), now called the National Institute of Standards and Testing (NIST), implemented the most ambitious and comprehensive long-term corrosion behavior test for stainless steels in soil environments. This study had historic significance since the NBS 1957 landmark corrosion textbook compiled by Romanoff did not include stainless steels, and this 1970 research set forth to complete the missing body of knowledge. To conduct the test, NIST scientists buried 6,324 coupons from stainless steel types, specialty alloys, composite configurations, multiple material forms, and treatment conditions at six distinctive soil-type sites throughout the country. Between 1971 and 1980, four sets of coupons were removed from six sites to establish 1-year, 2-year, 4-year, and 8-year corrosion rates data sets for different soil environments. The fifth and last set of coupons (approximately 200 at each site) remains undisturbed after 32-years, providing a virtual buried treasure of material and subsurface scientific data. These buried coupons and the surrounding soils represent an analog to the condition of buried waste and containers. Heretofore, the samples were simply pulled from the soil, measured for mass loss and the corrosion rate determined while the subsurface/fate and transport information was not considered nor gathered. Funded through an Environmental Management Science Program (EMSP) proposal, the Idaho National Engineering and Environmental Laboratory (INEEL) operated for the U.S. Department of Energy by Bechtel-BWXT Idaho, LLC (BBWI), is chartered to restart this corrosion test and concurrently capture the available subsurface/fate and transport information. Since the work of retrieving the buried metal coupons is still in the planning stage, this paper outlines the interdisciplinary team of scientists and engineers and defines the benefits of this research to long-term stewardship, subsurface science, and infrastructure protection programs
Predicting Phenotypic Diversity and the Underlying Quantitative Molecular Transitions
During development, signaling networks control the formation of multicellular patterns. To what extent quantitative fluctuations in these complex networks may affect multicellular phenotype remains unclear. Here, we describe a computational approach to predict and analyze the phenotypic diversity that is accessible to a developmental signaling network. Applying this framework to vulval development in C. elegans, we demonstrate that quantitative changes in the regulatory network can render ~500 multicellular phenotypes. This phenotypic capacity is an order-of-magnitude below the theoretical upper limit for this system but yet is large enough to demonstrate that the system is not restricted to a select few outcomes. Using metrics to gauge the robustness of these phenotypes to parameter perturbations, we identify a select subset of novel phenotypes that are the most promising for experimental validation. In addition, our model calculations provide a layout of these phenotypes in network parameter space. Analyzing this landscape of multicellular phenotypes yielded two significant insights. First, we show that experimentally well-established mutant phenotypes may be rendered using non-canonical network perturbations. Second, we show that the predicted multicellular patterns include not only those observed in C. elegans, but also those occurring exclusively in other species of the Caenorhabditis genus. This result demonstrates that quantitative diversification of a common regulatory network is indeed demonstrably sufficient to generate the phenotypic differences observed across three major species within the Caenorhabditis genus. Using our computational framework, we systematically identify the quantitative changes that may have occurred in the regulatory network during the evolution of these species. Our model predictions show that significant phenotypic diversity may be sampled through quantitative variations in the regulatory network without overhauling the core network architecture. Furthermore, by comparing the predicted landscape of phenotypes to multicellular patterns that have been experimentally observed across multiple species, we systematically trace the quantitative regulatory changes that may have occurred during the evolution of the Caenorhabditis genus
- …