246 research outputs found

    Graphite ionization vacuum gauge

    Get PDF
    Triode gauge with electron source, electron collector, and positive ion collector made from either graphite or carbon material extends low-pressure ranges of existing gauges by changing only materials used in construction. Advantages of graphite gauge stem from physical properties of graphite (or carbon)

    Development of UHF measurements

    Get PDF
    Collector gauge and orbitron gauge for ultrahigh vacuum measurement

    Mechanical Instabilities of Biological Tubes

    Full text link
    We study theoretically the shapes of biological tubes affected by various pathologies. When epithelial cells grow at an uncontrolled rate, the negative tension produced by their division provokes a buckling instability. Several shapes are investigated : varicose, enlarged, sinusoidal or sausage-like, all of which are found in pathologies of tracheal, renal tubes or arteries. The final shape depends crucially on the mechanical parameters of the tissues : Young modulus, wall-to-lumen ratio, homeostatic pressure. We argue that since tissues must be in quasistatic mechanical equilibrium, abnormal shapes convey information as to what causes the pathology. We calculate a phase diagram of tubular instabilities which could be a helpful guide for investigating the underlying genetic regulation

    Predicting Phenotypic Diversity and the Underlying Quantitative Molecular Transitions

    Get PDF
    During development, signaling networks control the formation of multicellular patterns. To what extent quantitative fluctuations in these complex networks may affect multicellular phenotype remains unclear. Here, we describe a computational approach to predict and analyze the phenotypic diversity that is accessible to a developmental signaling network. Applying this framework to vulval development in C. elegans, we demonstrate that quantitative changes in the regulatory network can render ~500 multicellular phenotypes. This phenotypic capacity is an order-of-magnitude below the theoretical upper limit for this system but yet is large enough to demonstrate that the system is not restricted to a select few outcomes. Using metrics to gauge the robustness of these phenotypes to parameter perturbations, we identify a select subset of novel phenotypes that are the most promising for experimental validation. In addition, our model calculations provide a layout of these phenotypes in network parameter space. Analyzing this landscape of multicellular phenotypes yielded two significant insights. First, we show that experimentally well-established mutant phenotypes may be rendered using non-canonical network perturbations. Second, we show that the predicted multicellular patterns include not only those observed in C. elegans, but also those occurring exclusively in other species of the Caenorhabditis genus. This result demonstrates that quantitative diversification of a common regulatory network is indeed demonstrably sufficient to generate the phenotypic differences observed across three major species within the Caenorhabditis genus. Using our computational framework, we systematically identify the quantitative changes that may have occurred in the regulatory network during the evolution of these species. Our model predictions show that significant phenotypic diversity may be sampled through quantitative variations in the regulatory network without overhauling the core network architecture. Furthermore, by comparing the predicted landscape of phenotypes to multicellular patterns that have been experimentally observed across multiple species, we systematically trace the quantitative regulatory changes that may have occurred during the evolution of the Caenorhabditis genus

    Drosophila Varicose, a member of a new subgroup of basolateral MAGUKs, is required for septate junctions and tracheal morphogenesis

    Get PDF
    Epithelial tubes are the functional units of many organs, but little is known about how tube sizes are established. Using the Drosophila tracheal system as a model, we previously showed that mutations in varicose (vari) cause tubes to become elongated without increasing cell number. Here we show vari is required for accumulation of the tracheal size-control proteins Vermiform and Serpentine in the tracheal lumen. We also show that vari is an essential septate junction (SJ) gene encoding a membrane associated guanylate kinase (MAGUK). In vivo analyses of domains important for MAGUK scaffolding functions demonstrate that while the Vari HOOK domain is essential, the L27 domain is dispensable. Phylogenetic analyses reveal that Vari helps define a new MAGUK subgroup that includes mammalian PALS2. Importantly, both Vari and PALS2 are basolateral, and the interaction of Vari with the cell-adhesion protein Neurexin IV parallels the interaction of PALS2 and another cell-adhesion protein, Necl-2. Vari therefore bolsters the similarity between Drosophila and vertebrate epithelial basolateral regions, which had previously been limited to the common basolateral localization of Scrib, Dlg and Lgl, proteins required for epithelial polarization at the beginning of embryogenesis. However, by contrast to Scrib, Dlg and Lgl, Vari is not required for cell polarity but rather is part of a cell-adhesion complex. Thus, Vari fundamentally extends the similarity of Drosophila and vertebrate basolateral regions from sharing only polarity complexes to sharing both polarity and cell-adhesion complexes
    • …
    corecore