145 research outputs found

    The Anthropology of Malaria: Locating the Social.

    Get PDF

    Interleukin 7 from Maternal Milk Crosses the Intestinal Barrier and Modulates T- Cell Development in Offspring

    Get PDF
    Background Breastfeeding protects against illnesses and death in hazardous environments, an effect partly mediated by improved immune function. One hypothesis suggests that factors within milk supplement the inadequate immune response of the offspring, but this has not been able to account for a series of observations showing that factors within maternally derived milk may supplement the development of the immune system through a direct effect on the primary lymphoid organs. In a previous human study we reported evidence suggesting a link between IL-7 in breast milk and the thymic output of infants. Here we report evidence in mice of direct action of maternally-derived IL-7 on T cell development in the offspring. Methods and Findings Β We have used recombinant IL-7 labelled with a fluorescent dye to trace the movement in live mice of IL-7 from the stomach across the gut and into the lymphoid tissues. To validate the functional ability of maternally derived IL- 7 we cross fostered IL-7 knock-out mice onto normal wild type mothers. Subsets of thymocytes and populations of peripheral T cells were significantly higher than those found in knock-out mice receiving milk from IL-7 knock-out mothers. Conclusions/Significance Our study provides direct evidence that interleukin 7, a factor which is critical in the development of T lymphocytes, when maternally derived can transfer across the intestine of the offspring, increase T cell production in the thymus and support the survival of T cells in the peripheral secondary lymphoid tissue

    Diagnostische Bedeutung der Proteinbindung von Plasmacortisol, bestimmt durch Dextrangelfiltration

    Get PDF
    1. Mittels Dextrangelfiltration wurde nach Inkubation von markiertem Cortisol und Plasma der proteingebundene und der sog. freie Anteil (%) des endogenen Plasmacortisols ermittelt und bei gleichzeitiger fluorimetrischer Bestimmung der 11-OHCS auch die Menge proteingebundenen, bzw. sog. freien Cortisols (Β΅g-%) berechnet. 2. Die diagnostische Brauchbarkeit der Methode wurde bei Patienten mit Nebennierenrindeninsuffizienz, mit Hypophysentumoren, nach Hypophysektomie, mit Cushing-Syndrom mit der fluorimetrischen Bestimmung der 11-OHCS verglichen. Die einfache Bestimmung der Cortisolbindung war bei hypophysektomierten Patienten der Bestimmung der 11-OHCS ΓΌberlegen und entsprach der aufwendigeren ACTH-Belastung. 3. Falsch hohe fluorimetrische 11-OHCS-Spiegel im Plasma unter Spirolacton- oder Oestrogenbehandlung und in der GraviditΓ€t lassen sich durch Bestimmung der Cortisolbindung klΓ€ren. Bei SchilddrΓΌsenΓΌberfunktion war das sog. freie Cortisol im Plasma relativ und absolut vermehrt, bei SchilddrΓΌsenunterfunktion fand sich eine Zunahme des plasmaproteingebundenen Cortisols.1. Following incubation of labeled cortisol and plasma the percentages of protein bound and socalled free endogenous cortisol were determined by means of dextran gel filtration. 2. The diagnostic value of this method was compared with fluorimetric determinations of 11-OHCS for patients with adrenal insufficiency, Cushing-Syndrome, pituitary tumors and after hypophysectomy. In hypophysectomized patients the simple determination of protein bound cortisol was found to correlate well with diagnostic ACTH-infusion tests and to be more sensitive than fluorimetric determinations of 11-OHCS in 9 a.m. plasma. 3. Falsely elevated fluorimetric values of plasma 11-OHCS in patients treated with spirolactone or estrogens, resp. during pregnancy may be recognized through determination of cortisol binding. β€” In thyrotoxicosis socalled free cortisol was elevated, both relatively and absolutely; in hypothyroidism an increase of protein bound cortisol was found

    Neurod1 Suppresses Hair Cell Differentiation in Ear Ganglia and Regulates Hair Cell Subtype Development in the Cochlea

    Get PDF
    Background: At least five bHLH genes regulate cell fate determination and differentiation of sensory neurons, hair cells and supporting cells in the mammalian inner ear. Cross-regulation of Atoh1 and Neurog1 results in hair cell changes in Neurog1 null mice although the nature and mechanism of the cross-regulation has not yet been determined. Neurod1, regulated by both Neurog1 and Atoh1, could be the mediator of this cross-regulation. Methodology/Principal Findings: We used Tg(Pax2-Cre) to conditionally delete Neurod1 in the inner ear. Our data demonstrate for the first time that the absence of Neurod1 results in formation of hair cells within the inner ear sensory ganglia. Three cell types, neural crest derived Schwann cells and mesenchyme derived fibroblasts (neither expresses Neurod1) and inner ear derived neurons (which express Neurod1) constitute inner ear ganglia. The most parsimonious explanation is that Neurod1 suppresses the alternative fate of sensory neurons to develop as hair cells. In the absence of Neurod1, Atoh1 is expressed and differentiates cells within the ganglion into hair cells. We followed up on this effect in ganglia by demonstrating that Neurod1 also regulates differentiation of subtypes of hair cells in the organ of Corti. We show that in Neurod1 conditional null mice there is a premature expression of several genes in the apex of the developing cochlea and outer hair cells are transformed into inner hair cells. Conclusions/Significance: Our data suggest that the long noted cross-regulation of Atoh1 expression by Neurog1 migh

    Integrating innovations:a qualitative analysis of referral non-completion among rapid diagnostic test-positive patients in Uganda's human African trypanosomiasis elimination programme

    Get PDF
    BACKGROUND: The recent development of rapid diagnostic tests (RDTs) for human African trypanosomiasis (HAT) enables elimination programmes to decentralise serological screening services to frontline health facilities. However, patients must still undertake multiple onwards referral steps to either be confirmed or discounted as cases. Accurate surveillance thus relies not only on the performance of diagnostic technologies but also on referral support structures and patient decisions. This study explored why some RDT-positive suspects failed to complete the diagnostic referral process in West Nile, Uganda. METHODS: Between August 2013 and June 2015, 85% (295/346) people who screened RDT-positive were examined by microscopy at least once; 10 cases were detected. We interviewed 20 RDT-positive suspects who had not completed referral (16 who had not presented for their first microscopy examination, and 4 who had not returned for a second to dismiss them as cases after receiving discordant [RDT-positive, but microscopy-negative results]). Interviews were analysed thematically to examine experiences of each step of the referral process. RESULTS: Poor provider communication about HAT RDT results helped explain non-completion of referrals in our sample. Most patients were unaware they were tested for HAT until receiving results, and some did not know they had screened positive. While HAT testing and treatment is free, anticipated costs for transportation and ancillary health services fees deterred many. Most expected a positive RDT result would lead to HAT treatment. RDT results that failed to provide a definitive diagnosis without further testing led some to question the expertise of health workers. For the four individuals who missed their second examination, complying with repeat referral requests was less attractive when no alternative diagnostic advice or treatment was given. CONCLUSIONS: An RDT-based surveillance strategy that relies on referral through all levels of the health system is inevitably subject to its limitations. In Uganda, a key structural weakness was poor provider communication about the possibility of discordant HAT test results, which is the most common outcome for serological RDT suspects in a HAT elimination programme. Patient misunderstanding of referral rationale risks harming trust in the whole system and should be addressed in elimination programmes

    Long-Distance Three-Color Neuronal Tracing in Fixed Tissue Using NeuroVue Dyes

    Get PDF
    Dissecting development of neuronal connections is critical for understanding neuronal function in both normal and diseased states. Charting the development of the multitude of connections is a monumental task, since a given neuron typically receives hundreds of convergent inputs from other neurons and provides divergent outputs for hundreds of other neurons. Although progress is being made utilizing various mutants and/or genetic constructs expressing fluorescent proteins like GFP, substantial work remains before a database documenting the development and final location of the neuronal pathways in an adult animal is completed. The vast majority of developing neurons cannot be specifically labeled with antibodies and making specific GFP-expressing constructs to tag each of them is an overwhelming task. Fortunately, fluorescent lipophilic dyes have emerged as very useful tools to systematically compare changes in neuronal networks between wild-type and mutant mice. These dyes diffuse laterally along nerve cell membranes in fixed preparations, allowing tracing of the position of a given neuron within the neuronal network in murine mutants fixed at various stages of development. Until recently, however, most evaluations have been limited to one, or at most, two color analyses. We have previously reported three color neuronal profiling using the novel lipophilic dyes NeuroVue (NV) Green, Red and Maroon (Fritzsch et al., Brain. Res. Bull. 66:249–258, 2005). Unfortunately such three color experiments have been limited by the fact that NV Green and its brighter successor, NV Emerald, both exhibit substantially decreased signal intensities when times greater than 48 hours at 37Β°C are required to achieve neuronal profile filling (unpublished observations). Here we describe a standardized test system developed to allow comparison of candidate dyes and its use to evaluate a series of 488 nm-excited green-emitting lipophilic dyes. The best of these, NV Jade, has spectral properties well matched to NV Red and NV Maroon, better solubility in DMF than DiO or DiA, improved thermostability compared with NV Emerald, and the ability to fill neuronal profiles at rates of 1 mm per day for periods of at least 5 days. Use of NV Jade in combination with NV Red and NV Maroon substantially improves the efficiency of connectional analysis in complex mutants and transgenic models where limited numbers of specimens are available

    Dynamic Energy Landscapes of Riboswitches Help Interpret Conformational Rearrangements and Function

    Get PDF
    Riboswitches are RNAs that modulate gene expression by ligand-induced conformational changes. However, the way in which sequence dictates alternative folding pathways of gene regulation remains unclear. In this study, we compute energy landscapes, which describe the accessible secondary structures for a range of sequence lengths, to analyze the transcriptional process as a given sequence elongates to full length. In line with experimental evidence, we find that most riboswitch landscapes can be characterized by three broad classes as a function of sequence length in terms of the distribution and barrier type of the conformational clusters: low-barrier landscape with an ensemble of different conformations in equilibrium before encountering a substrate; barrier-free landscape in which a direct, dominant β€œdownhill” pathway to the minimum free energy structure is apparent; and a barrier-dominated landscape with two isolated conformational states, each associated with a different biological function. Sharing concepts with the β€œnew view” of protein folding energy landscapes, we term the three sequence ranges above as the sensing, downhill folding, and functional windows, respectively. We find that these energy landscape patterns are conserved in various riboswitch classes, though the order of the windows may vary. In fact, the order of the three windows suggests either kinetic or thermodynamic control of ligand binding. These findings help understand riboswitch structure/function relationships and open new avenues to riboswitch design

    Synthetic biology: Understanding biological design from synthetic circuits

    Get PDF
    An important aim of synthetic biology is to uncover the design principles of natural biological systems through the rational design of gene and protein circuits. Here, we highlight how the process of engineering biological systems β€” from synthetic promoters to the control of cell–cell interactions β€” has contributed to our understanding of how endogenous systems are put together and function. Synthetic biological devices allow us to grasp intuitively the ranges of behaviour generated by simple biological circuits, such as linear cascades and interlocking feedback loops, as well as to exert control over natural processes, such as gene expression and population dynamics

    Establishment of epigenetic patterns in development

    Get PDF
    The distinct cell types of the body are established from the fertilized egg in development and assembled into functional tissues. Functional characteristics and gene expression patterns are then faithfully maintained in somatic cell lineages over a lifetime. On the molecular level, transcription factors initiate lineage-specific gene expression programmmes and epigenetic regulation contributes to stabilization of expression patterns. Epigenetic mechanisms are essential for maintaining stable cell identities and their disruption can lead to disease or cellular transformation. Here, we discuss the role of epigenetic regulation in the early mouse embryo, which presents a relatively well-understood system. A number of studies have contributed to the understanding of the function of Polycomb group complexes and the DNA methylation system. The role of many other chromatin regulators in development remains largely unexplored. Albeit the current picture remains incomplete, the view emerges that multiple epigenetic mechanisms cooperate for repressing critical developmental regulators. Some chromatin modifications appear to act in parallel and others might repress the same gene at a different stage of cell differentiation. Studies in pluripotent mouse embryonic stem cells show that epigenetic mechanisms function to repress lineage specific gene expression and prevent extraembryonic differentiation. Insights into this epigenetic β€œmemory” of the first lineage decisions help to provide a better understanding of the function of epigenetic regulation in adult stem cell differentiation
    • …
    corecore